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Abstract

In this paper I formulate a continuous time and continuous space version of Harris
and Vickers (1987) Racing Under Uncertainty with potentially asymmetric players. To
prove the existence and uniqueness of the equilibria, I use a boundary value problem
formulation which is novel to the dynamic competition literature. In some cases, I
obtain closed-form solutions of the equilibria in which equilibrium strategies exhibit
the discouragement e¤ect similar to the one in the original paper.
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Paul L�Huillier, Giuseppe Moscarini, Yuliy Sannikov, Lones Smith, Ivan Werning and participants at the
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1 Introduction

A race is a contest between two or more competitors who exert e¤ort to win a prize. Sport
contests, such as bicycle races, golf tournaments and basketball championships, are the most
popular forms of races. Races studied in economic theory include patent races and contests
for job promotion. Despite its importance, the theoretical literature on dynamic competition
has been relatively sparse. Harris and Vickers (1987) is a pioneering paper with a model
in discrete state-space. In their model, they prove that at least one equilibrium exists and
characterize some of its properties. However, they only prove the uniqueness of the symmetric
equilibria and they do not allow for discounting. This paper introduces a continuous time,
continuous state-space model based on Harris and Vickers (1987)�s tug-of-war to address
the question of the existence and uniqueness of equilibrium. The existence and uniqueness
theorems apply for some cases with asymmetric players and discounting.
In this model, two players compete for a �nal reward. The reward is won by the �rst

player who achieves a given distance over his rival. At any moment when the race is going
on, each player puts in e¤ort which in�uences the distance between him and his rival: a
Brownian motion with a drift that depends on the e¤orts of the players. The cost of e¤ort
functions are strictly convex. I consider the set of Markovian Perfect Equilibria (MPEs)
in which equilibrium strategies of the players are conditioned only on the current distance
between them. I prove the existence and uniqueness of equilibrium MPE strategies under
some weak conditions on the cost functions and �nal rewards. In some special cases, the
continuous time framework delivers a closed-form solution of MPEs which facilitates the
characterization of equilibrium strategies1.
The equilibrium strategies share basic properties with the equilibrium strategies in the

discrete state space model in Harris and Vickers (1987). As in the latter, the Markov Perfect
Equilibrium (MPE) strategies exhibit a discouragement e¤ect : The players exert high e¤ort
only when they are close to each other. When a player is left further behind by his rival,
he reduces his e¤ort given his slim chance of winning. The rival who gets further ahead
therefore faces less competition and can safely reduce his e¤ort. A larger distance between
the two players thus discourages both players. Harris and Vickers (1987) however show the
discouragement e¤ect only for the case in which two players have the same cost function and
they do not discount the future. In contrast, I use the theory of boundary value problems
for systems of second-order di¤erential equations developed in Hartman (1964); this theory
allows me to consider the model an show the discouragement e¤ect in full generality with
potentially asymmetric players and with discounting.
Moscarini and Smith (2007) is the �rst paper to address the optimal design of the race

in a similar continuous time, continuous state-space model. Moscarini and Smith take a dif-
ferent approach to solving the model, relying on the symmetry of Markov Perfect Equilibria.
Besides restricting their attention to symmetric equilibria, the authors consider only the case
of no discounting.
Budd, Harris, and Vickers (1993) also solve a similar model using boundary value rep-

resentations. Their method only applies when the discount rate r goes to in�nity. Another

1In the case with identical players, Moscarini and Smith (2007) �nd a closed-form identical to mine up
to an a¢ ne transformation. Their method relies on symmetric equilibria. My method covers asymmetric
equilibria also.
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continuous time continuous state-space version of the Harris and Vickers model is developed
in Horner (1999). He restricts the action space to be �nite, allowing for only two levels of
e¤ort. Hence, the MPE strategies are such that players switch their actions only infrequently
based on some threshold rule.
In the next section, I present the model. In Section 3, I prove the existence and uniqueness

of MPEs with general cost functions under some weak restrictions, both with and without
discounting. In Section 4, I study the properties of equilibrium strategies including the dis-
couragement e¤ect. I also illustrate these properties for the case of quadratic cost functions.
Section 5 concludes.

2 The Model

Two players, A and B, engage in a contest for a �nal reward in continuous time. At each
moment, each player chooses an e¤ort, xA for player A which costs him cA (xA) and xB for
player B which costs him cB (xB). In Harris and Vickers (1987), A and B are two research
�rms competing for an exclusive patent. The e¤ort can then be interpreted as money spent
on laboratories, equipment, researchers, etc. The players discount future costs and rewards
at (potentially di¤erent) rates ri � 0.
Let z 2 R denote the relative distance between the two players. The race starts at z = 0,

and a player wins the race if he attains a certain lead over the other player: Player A wins
the race with reward PA when he reaches his lead over B, z = KA > 0, and B wins the race
with reward PB when he reaches his lead (�KB) over A, i.e., z = KB < 0. Therefore, z is
also the only payo¤ relevant state of the race.2

The uncertainty is incorporated in the temporal evolution of the state zt :

dzt = (xAt � xBt) dt+ �dWt; (1)

where Wt is a standard Brownian motion and W0 = 0.
In order to ensure that in each moment the e¤ort choice of each player is a well-de�ned

maximization problem with a unique solution, I impose the following standard assumption
on the cost function of each player

Assumption 1 The cost functions ci (x) are twice continuously di¤erentiable, strictly in-
creasing and strictly convex: c0i (x) > 0 and c

00
i (x) > 0 8x > 0 and i 2 fA;Bg. Moreover the

players do not bear any cost if they do not exert e¤ort, ci (0) = 0 and the Inada conditions

2In this model, the only payo¤ relevant state is the distance between the two players because the outcome
of the race only depends on the distance. While this model might be a suitable description of some type
of races such a race for job promotion or tie-breaks in tennis, it is not a good model for patent races in
which a player wins if he achieves a certain discovery, not his progress relative to the other player. In Cao
(2009), I develop a model for this situation. The payo¤ relevant state is a vector of two numbers, distance
of each player to a �nish line. However, that model is less tractable, and I can only solve it numerically.
The equilibrium strategies in this race exhibits similar properties to the equilibrium strategies in this paper.
Moreover, in discrete state spaces, Harris and Vickers (1987) conjecture and verify numerically that the
tug-of-war race is a close approximation of the two dimension race. Similar conjecture holds for continuous
state-space.
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at 0 and 1 are satis�ed:

c0i (0) = 0 and lim
x�!+1

c0i (x) = +1:

In addition, in order for the stochastic di¤erential equation (1) describing the evolution of
the state variable z to have a solution, the e¤ort choices xi;t must be bounded. I will impose
an explicit bound on the e¤ort choice of each player: 0 � xi;t � x. The following assumption
guarantees that x can be chosen large enough so that it is never binding in equilibrium.

Assumption 2
R +1 ds

(c0A)
�1
(s)+(c0B)

�1
(s)
= +1

This assumption means that the marginal cost increases fast enough at high levels of
e¤ort so that the players never want to exert too much e¤ort. It will be shown later in the
appendix that x can be chosen as max

�
(c0A)

�1 (M) ; (c0B)
�1 (M)

	
in which M > PA+PB

KA�KB
is

uniquely determined asZ M

PA+PB
KA�KB

sds
2maxfrAPA;rBPBg

�2
+ 2

�2

�
(c0A)

�1 (s) + (c0B)
�1 (s)

�
s
= PA + PB: (2)

Such an M exists due to Assumption 2.3 This assumption is satis�ed if c00i (x) are bounded
below from 0 at in�nity; i.e., there exists an � and an x� > 0 such that c00i (x) > � 8x > x�:
Geometric cost functions ci (x) = cix

ki with ki � 2 satisfy this assumption, in particular
quadratic cost functions satisfy this assumption since they have constant second derivatives.
If this assumption is not satis�ed, for example, in the extreme, when they are both linear,

players will exert high e¤ort and might reach any upper bound on the e¤orts. I rule out this
situation to avoid imposing any ad-hoc bound on e¤ort of the players. Horner (1999) is an
example of races in which ci (:) are linear. In equilibrium, the players only choose between
two levels of e¤ort which can be interpreted as the bounds that he imposes on the e¤orts of
the players given the linearity of the cost functions. The equilibrium strategies are such that
players switch their actions only infrequently based on some threshold rule. This structure
of equilibria is thus very di¤erent from equilibria in my model.
Under the restrictions on the cost functions and the e¤ort choice of the players, the

expected payo¤ functions of each player i following a optimal strategy Xi = fxitg1t=0 given
his rival�s strategy X�i = fx�itg1t=0 is well-de�ned:

Ji (z) = sup
Xi

E0

�
e�ri�Pi1fi winsg �

Z �

0

e�rtci (xit) dt

���� z0 = z;X�i

�
; (3)

where � is the �nish time of the race, i.e., the �rst time where either zt reaches KA; player
A wins the race, or zt reaches KB, player B wins the race. The indicator function indicates
who wins the race. Notice that � is a random variable depending on the uncertain evolution

3Harris and Vickers (1987, p7) also assumes this. However, they do not show conditions under which the
bound is not binding.
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of the race; or more precisely, it is a stopping time. The race starts at z0 2 (KB; KA). There
are two components of the payo¤ functions. The �rst part is the discounted reward e�r�Pi if
player i wins the race, and the second part is the discounted cost of e¤ort, e�rt ci (xit), that
player i continuously makes during the race. Each player chooses a strategy maximizing his
expected payo¤ given his rival�s strategy.
The problem now is to �nd the equilibrium strategy functions, (XA; XB) such that each

player maximizes his expected payo¤ given his rival�s strategy. It is well-known that the
best response to a Markov strategy is a Markov strategy thus any MPE is a subgame perfect
equilibrium. An analogy for continuous time games is that, if strategy xBt is Markovian, i.e.
function of zt only, then xAt can be chosen from the class of Markovian strategies, and vice
versa; therefore, I can restrict myself to cases where both strategies are Markovian.
I further restrict myself to the set of equilibria with twice di¤erentiable value functions

in order to write the second derivatives. We can then obtain the Hamilton-Jacobi-Bellman
equations using the dynamic programming principle:

max
0�xi(zt)�x

�
�ci (xi (zt))� riJi (zt) + (xA (zt)� xB (zt)) J 0i (zt) +

�2

2
J 00i (zt)

�
= 0: (4)

At each moment, the e¤ort choice of each player involves the trade-o¤ between the current
convex cost of e¤ort, �ci (x) with higher chance of winning, taken the other player�s strategy
as given,(x� x�i (zt)) J 0i (zt) . Each player also discounts the future payo¤,�rJi (zt) ; and
takes into account the uncertainty evolution of the state z; �

2

2
J 00i (zt). The �rst order condi-

tions from (4) determine the e¤ort levels of players as functions of the derivatives of their
value functions:

(xA (z) ; xB (z)) = (fA (J
0
A (z)) ; fB (�J 0B (z))) (5)

where

fi (k) =

�
0 if k � 0
min

�
(c0i)

�1 (k) ; x
	
otherwise

(6)

Finally, the boundary conditions for JA and JB are

Ji (Ki) = Pi; J�i (Ki) = 0: (7)

These boundary conditions are intuitive: when A is KA ahead of B; he wins the reward
PA, B receives nothing and when B is �KB ahead of A; he wins the reward PB, A receives
nothing:

De�nition 1 A Markov Perfect Equilibrium (MPE) is a pair of equilibrium payo¤ functions
(JA (z) ; JB (z)) satisfying the Hamilton-Jacobi-Bellman equations (4) and the boundary con-
ditions (7) and a pair of equilibrium strategies (xA (z) ; xB (z)) given by (5).

The task of �nding MPE strategies becomes solving a second-order boundary value
problem on (JA (z) ; JB (z)). We �rst solve the e¤ort choice given the incentive J 0i (z) as
in (5).Then, by plugging the e¤ort choice into (4), we can re-write the Hamilton-Jacobi-
Bellman equations as an explicit second-order boundary value problem:�

J 00A
J 00B

�
=
2

�2

�
rAJA
rBJB

�
+
2

�2
F

�
J 0A
J 0B

�
(8)
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with the boundary conditions (7) and where

F

�
J 0A
J 0B

�
=

�
(fA (J

0
A)� fB (�J 0B)) J 0A � cA (fA (J 0A))

(fA (J
0
A)� fB (�J 0B)) J 0B � cB (fB (�J 0B))

�
(9)

Rewriting the Hamilton-Jacobi-Bellman equations as a boundary value problem allows me to
use the theory of boundary value for systems of second order di¤erential equation developed
in Hartman (1964). Using this system, some preliminary properties of the payo¤ functions
can be shown. First, the payo¤ functions are strictly positive except at the two boundaries.
This is because, whenever the race is not yet concluded, a player can choose to stay in the
race and to exert no e¤ort, but he still has a positive probability of winning due to the
uncertain evolution of the state z. Second, the closer a player is to his goal, the higher his
expected payo¤ is because he has more chance of winning. Hence, the slope of the payo¤
function, which is the incentive determining the e¤ort level of each player, is strictly positive
in absolute value. So (6) implies that each player will exert a strictly positive e¤ort at any
moment of the race, that is, xi (z) > 0 8z and i 2 fA;Bg.

Lemma 1 A solution of the payo¤ functions (JA; JB) to the system (8) satis�es

1. Strict positivity of the payo¤ functions: JA (z) ; JB (z) > 0 for all z 2 (KB; KA) :
Given the option to exert no e¤ort, and the Brownian evolution of the distance between
the two players, each player has a strictly positive probability of winning the race without
incurring any cost of e¤ort; their payo¤ functions are thus strictly positive whenever
the race is not yet concluded.

2. Strict positivity of incentives: J 0A (z) > 0 and J
0
B (z) < 0 for all z 2 (KB; KA) : As

each player moves closer to his goal, he has a higher probability of winning the race,
therefore, his payo¤ is higher. Since the incentives are strictly positive, the players
always exert a strictly positive level of e¤ort.

Proof. In the Appendix, using the Gronwall�s Inequality.

3 Existence and Uniqueness of Markov Perfect Equi-
librium

Before analyzing the equilibrium strategies and outcomes of the race, it is important to
prove the existence of Markov Perfect Equilibria and their uniqueness, or equivalently the
existence and uniqueness of the solution to the boundary value problem (8). The steps of
the existence and uniqueness proof are in the Appendix.

Theorem 1 A Markov equilibrium exists.

Proof. In the Appendix. It is enough to show that the boundary value problem (8) has at
least one solution
As in other economic models, it is more di¢ cult to ensure the uniqueness of equilibria.

As a result, an extra condition, in addition to Assumption 2 on the cost of e¤ort functions,
is required to ensure the uniqueness of the MPE.
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Theorem 2 Suppose that c00i (x) are bounded below, i.e., there exists an � such that

c00i (x) > � 8x:

Then (8) has a unique solution when

max
n
(c0A)

�1
(M) ; (c0B)

�1
(M)

o
+
M

�
< 4min frA; rBg+ �2

�2

(KA �KB)
2 ; (10)

where M is determined in (2).

Proof. In the Appendix.
Notice that the left hand side of (10) is strictly increasing in M and the (2) implies

that M is increasing in max (PA; PB), so the solution is unique if max (PA; PB) is relatively
small, the discount factor is relatively high or the degree of uncertainty, �, is relatively large.
Finally, as in Harris and Vickers (1987), the race is more likely to admit a unique equilibrium
if the cost function is su¢ ciently convex, i.e., � is su¢ ciently large.

4 The Discouragement E¤ect

The previous section establishes the general existence and uniqueness of the MPE. In this
section, I investigate some properties of the MPE strategies. A striking property is that
higher distance between the leader and the follower discourages both from exerting e¤ort,
which is often mentioned as the discouragement e¤ect. This e¤ect leads to an ambiguous
e¤ect of incentives, such as the e¤ect of higher �nal reward to the winner of the race on the
total expected e¤ort of the players. Moscarini and Smith (2007) show that a higher �nal
reward does not necessarily increase the total expected e¤ort of the players. In Cao (2009), I
show that also due to this discouragement e¤ect, handicapping the advantaged player might
counter-intuitively reduce the expected completion time of the race.
In Subsection 4.1, I show the discouragement e¤ect for general cost functions. I illustrate

this e¤ect with a special case of quadratic cost functions in Subsection 4.2 where I can �nd a
closed form solution. The factors that a¤ect the intensity of this e¤ect are the �nal rewards,
the amount of uncertainty, the level of the cost of e¤ort to the two players.

4.1 General cost functions

I �nd two properties of the MPE strategies which are similar to the discrete time MPE
strategies in Harris and Vickers (1987). First, the leader in the race puts in higher e¤orts
than the follower does. Second, e¤orts of both players decrease as the gap between them
increases. Other R&D competition models share the second property of MPE strategies.
For instance, Aghion, Harris, Howitt, and Vickers (2001) and Acemoglu and Akcigit (2008),
both �nd that e¤ort is highest when �rms are technologically close to each other. The �rst
property, however, does not hold in all models. For instance, the models of Acemoglu and
Akcigit (2008) and Reinganum (1983) have the opposite property. In their model, there is an
Arrow�s replacement e¤ect, i.e., the leading �rm receives �ow pro�ts before successful new
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innovations, so it has relatively weaker incentive than the follower to stochastically shorten
the random time to the next innovation. In contrast, in my model, players only receive
reward at the end; the Arrow�s replacement e¤ect is thus not present.
To formalize the discouragement e¤ect, I de�ne the pivot of the game, z�, as where the

two players exert the same e¤ort level, i.e. xA (z�) = xB (z�). If there does not exist such a z�

then either, xA (z) > xB (z) for all z 2 [KB; KA], we de�ne z� = KB, or xA (z) < xB (z) for
all z 2 [KB; KA], we de�ne z� = KA. So z� always exists. In a symmetric equilibrium, as in
Moscarini and Smith (2007), z� = 0: Harris and Vickers (1987) only prove the discouragement
e¤ect for the case in which cA � cB. In such a case, z� can be de�ned equivalently as
z� = argmin

z2[KB ;KA]

(JA (z) + JB (z)) :

The following lemma shows that z� is unique.

Lemma 2 xA (z) > xB (z) for all z 2 (z�; KA] and xA (z) < xB (z) for all z 2 [KB; z
�).

Proof. Appendix
Given this pivot z�, we can say that, at a moment t, A is the leader of the race if he is

relatively closer to his goal than B (the follower) is, that is, zt > z� and vice versa when
zt < z

�. Given the potential asymmetries between the two players, z� does not necessarily
correspond to the point KA+KB

2
where the two players are at equal absolute distances from

their goal, except for symmetric equilibria.
Lemma 2 then means that the leader always exerts higher e¤ort than the follower does.

Also using the pivot, we can state the discouragement e¤ect in the following proposition.

Proposition 1 Suppose that z > z�;that is, player A is the leader and player B is the
follower, then

1. The discouragement e¤ect on the follower: The follower, player B, reduces his
e¤ort as he gets further behind. That is, xB (z) is strictly decreasing in z.

2. The discouragement e¤ect on the leader: Suppose rA = 0, once the leader,
player A, starts slowing down at z, he will continue to do so at any ez > z. That is if
x0A (z) � 0 then x0A (ez) < 0 for all ez > z:4

Proof. Appendix
Let us take a closer look at the interaction between the players�impatience and strategic

motives in their e¤ort choice. When a player is behind, the discouragement e¤ect and
discounting both serve to lower e¤ort provision (part 1 of Proposition 1). However, when a
player is su¢ ciently ahead, the strategic motivation reduces his incentive to provide greater
e¤ort, whereas discounting operates in the opposite direction. Indeed, numerical analysis
shows that when the leader�s discount rate is su¢ ciently high, the impatience is strong
enough to cancel the slowing down interval in which the leader reduces his e¤ort after getting
further ahead from the follower. Consequently, part 2 of Proposition 1 requires the additional
assumption that rA = 0.

4We can also show that, if z� is strictly interior, intially player A will increase his e¤ort, that is, x0A (z) > 0
for z close to z�.
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4.2 Example: Quadratic cost functions

Consider the case of quadratic cost and no discounting. I can solve the game in closed form.
Moscarini and Smith (2007) obtain a closed-form identical to the one presented here for
symmetric equilibria, up to an a¢ ine transformation. Their method relies on the symmetry
of equilibria. My method to derived closed-form solutions covers asymmetric equilibria also.5

I also establish the equivalence between lower cost of e¤ort, lower uncertainty and higher
�nal reward.
Let the cost of e¤ort functions be quadratic ci (x) = x2

2�i
. The higher �i is, the less e¤ort

costs to player i.

Lemma 3 The Markov equilibrium strategies (xA (z) ; xB (z)) have the form
�
�exA � z�� ; �exB � z���

where (exA (ez) ; exB (ez)) is a Markov equilibrium of the game with parameters e�A = e�B = e� = 1
and the rewards ePi = �iPi

�2
:

Proof. Appendix
This lemma says that, holding everything else constant, a player would be indi¤erent

between seeing its cost decreases from x2

�
to x2

�0 and seeing the �nal reward augmented by
�0

�
.

Moreover, both players would be indi¤erent seeing the degree of uncertainty decreases from
� to �0 and seeing their �nal rewards augmented by �

�0 .
The pair of the strategy functions is a solution to a vector-valued �rst-order boundary

problem. The closed-form solution is derived in the Appendix in which show that we can
implicitly solve for the e¤ort ratio of the e¤ort choices of the two players, g = xA(z)

xB(z)
, as a

function of the relative distance between them. In particular, g (z) is the solution to the
following equation:

g � 1
g
+ 2 ln (g) = C1z + C2 (11)

Since f (g) = g � 1
g
+ 2 ln (g) is strictly increasing over the interval (0;+1) and

lim
g�!0

f (g) = �1, lim
g�!1

f (g) = +1;

for each z there exists a unique g (z) satis�es (11):We have C1 greater than 0, thus g (z)
is increasing in z, i.e., a player exerts relatively higher e¤ort than his rival does when the
former is closer to his goal. The "pivot" of the race then corresponds to z� where g (z�) = 1.
It follow immediately from the fact that g (z) is strictly increasing that the leader always
exert higher e¤ort than the followers does. The discouragement e¤ects in Proposition 1,
part1 and 2 also follow from the closed form solution of the strategy functions

xA =
C1g

2

(g + 1)3
, xB =

C1g

(g + 1)3
: (12)

Let z > z�. For the follower, given g (z) is increasing in z and xB is strictly increasing in g
if g > 1

2
, xB is strictly decreasing. For the leader, xA starts decreasing his e¤ort at z�� such

5Similar derivation methods applies for geometric cost functions ci (x) = 1
�i

x1+k

1+k ; k > 0; however the �nal
expressions are not as simple as the ones for quadratic cost functions.
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that g (z��)= 2. So depending on whether g (KA) > 2, i.e. on Pi; �i,� from expression (27)

in the Appendix, the leader will start slowing down before the end of the race.
The higher the �nal reward, the stronger the discouragement e¤ect. When PA and PB

are large, the two players will both exert high e¤ort only when they are close to each other,
however when one player gets further ahead of his rival, he wants to reduce his e¤ort because
the cost of e¤ort is too high to him. He can safely reduce his e¤ort since the continuous time,
continuous state-space and perfect information features of the race allow him to commit to
engage in a war phase with high e¤ort when his rival gets closer to him. Given this strategy,
his rival also reduces e¤ort because of the smaller chance to win the race. As both PA, PB
go to in�nity, both players only exert in�nitely high e¤ort over a in�nitely small distance to
each other. As one of them takes the lead, the other reduces his e¤ort to almost 0, and the
leader exerts an in�nitesimal e¤ort level as well.
Moreover, the equivalence result above shows that lower cost of e¤ort delivers the same

equilibrium strategies as if the cost of e¤ort remains unchanged but the �nal rewards are
higher. Thus, the lower the cost of e¤ort to the players, the stronger the discouragement
e¤ect. Lower cost of e¤ort allows the players to sustain their strategy more cheaply.
Finally, also by the equivalence result, a lower uncertainty on the evolution of the state of

the race, i.e. lower �, corresponds to higher PA and PB, and thus a stronger discouragement
e¤ect. Indeed, the equivalent strategies are the same as in the case of unit uncertainty � = 1
and the �nal rewards are respectively ePA = PA

�2
and ePB = PB

�2
: In the limiting case when,

there is no uncertainty, i.e., � = 0, the disadvantaged player knows that the advantaged
player will rationally outdo any e¤ort he makes. This credible threat discourages the weaker
player from making any e¤ort. Fudenberg et al. (1983) and Harris and Vickers (1985) stress
the same point.

5 Conclusion

In this paper, I develop a simple continuous time model of racing under uncertainty. I prove
the existence of Markov Perfect Equilibria and, in some cases, also their uniqueness. The
equilibria have similar properties to those in the original discrete time model. In addition, for
some special cases, I can derive the closed-form of these MPE strategies, which facilitates the
study of the comparative statics. In Cao (2009), I use this closed-form solution to show that
handicapping the advantaged player in a race might be useful. A future research direction
is to develop a model with more realistic features of certain races, for example, allowing for
more general cost functions, discounting, and for a �nish line instead of distance between
players. Even though these models do not have closed-form MPEs, in Cao (2009) I show
that it is still possible to numerically compute the equilibria, and examine their properties.
Interestingly, the properties of the MPEs in these models are consistent with the results from
the less general model.
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Appendix
Derivation of Hamilton-Jacobi-Bellman equations. For example, for �rm A at time
t; assume that it optimizes from t+�t forward and solves

JA (zt) = max
x
Et

�
�
Z �t

0

e�rAscA (xt+s) ds+ e
�rA�tJA (zt+�t)

�
= max

x
Et
�
��tcA (x) + e�rA�t (JA (zt) + �JA (zt)) + o (�t)

�
(13)

The �rst part of the last expression is the �ow of the cost of R&D e¤ort during a time interval
of length �t. The second part is the discounted continuation value after this time interval.
The continuation value is discounted by the factor e�rA�t = 1� rA�t+ o (�t) ;where, from
now on, o (�t) denotes second-order terms. This continuation value depends on the evolution
of zt to zt+�t. By Ito�s Lemma, we have:

�JA (zt) = JA (zt+�t)� JA (zt)

= J 0A (zt)�zt +
�2

2
J 00A (zt)�t+ o (�t)

= J 0A (zt) (xAt � xBt)�t+ J 0A (zt)��Wt

+
�2

2
J 00A (zt)�t+ o (�t) :

Taking the expectations of both sides, and using the normal independent increments property
of the Brownian noise, we have Et [J 0A (zt)��Wt] = 0. Thus

Et [�JA (zt)] = J 0A (zt) (xAt � xBt)�t

+
�2

2
J 00A (zt)�t+ o (�t) :

Now, substitute these results into (13) and subtract JA (zt) from both sides. Dividing all
terms by �t, and taking the limit as �t �! 0, we obtain the Hamilton-Jacobi-Bellman
equation (4) for the value function of �rm A: We obtain similarly the Hamilton-Jacobi-
Bellman equation (4) for the value function of �rm B:
To prove Lemma 1, we will make use of the Gronwall�s Inequality6 in (Hartman 1964,

pg. 24).
Proof of Lema 1. 1) Let z� be a minimum of JA (z) over the interval [KB; KA] (since JA (:)
is continuous, that minimum exists). If z� is an interior point then we have J 0A (z

�) = 0. From

6Grownwall�s Inequality, Hartman (1964) II-1.1 Let u (t) and v (t) be non-negative, continuous
functions on [a; b] ; C � 0 a constant; and

v (t) � C +
Z t

a

v (s)u (s) ds for a � t � b:

Then

v (t) � C exp
�Z t

a

u (s) ds

�
for a � t � b;

in particular, if C = 0; then v � 0:
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(4) we have J 00A (z
�) = 2 rAJA (z

�) : In addition since z� is a minimum, we have J 00A (z
�) � 0

so JA (z�) � 0. Furthermore, at the two boundaries, JA � 0 therefore JA (z) � 0 for all z 2
[KB; KA].

Now if there exists an interior point z� such that JA (z�) = 0, let z�� be a maximum of
JA (:) over [KB; z

�] ; then J 0A (z
�) = 0 and J 00A (z

��) = 2rAJA (z
��). Since z�� is a maximum

and J 00A (z
��) � 0, we have JA (z��) � 0, thus JA (z) = 0 for all z 2 [KB; z

�]. And from the
fact that z� is strictly interior,

JA (z
�) = J 0A (z

�) = 0:

We can show that this yields a contradiction because JA would be identically 0 over [z�; KA].
First of all, we have the following inequality:

jJ 00A (z)j =
2

�2
jrAJA (z) + cA (fA (J 0A (z)))� (fA (J 0A (z))� xB (z)) J 0A (z)j

� 2rA
�2

jJA (z)j+ 3x jJ 0A (z)j ; (14)

where the inequalities is obtained from the three inequalities

0 � xB (z) � x
0 � fA (J

0
A (z)) � x

0 � cA (fA (J
0
A (z)))

� c0A (fA (J
0
A (z))) fA (J

0
A (z))

� jJ 0A (z)jx:

Apply the Gronwall�s inequality for jJA (z)j2 + jJ 0A (z)j
2 ; we have JA (z) = J 0A (z) = 0 8z 2

[z�; KA]. This yields a contradiction with the fact that JA (KA) = PA > 0.
So we have JA (z) > 0 for all z 2 (KB; KA). The proof for JB (z) is analogous.
2) By the mean value theorem, there exists a z0 2 (KB; KA) such that

J 0A
�
z0
�
=
JA (KA)� JA (KB)

KA �KB

=
PA

KA �KB

> 0:

If there exists some z1 2 (KB; KA) such that J 0A (z
1) < 0; then, by the intermediate value

theorem, there exists an interior point z� between z0 and z1 such that J 0A (z
�) = 0. Hence,

from the �rst part,
J 00A (z

�) = 2rAJA (z
�) > 0:

Consider the interval [KB; z
�] ,at z = KB, JA (KB) = 0:The extreme KB cannot be a

maximum of JA over this interval. And in a neighborhood z = z� � " of z�,

JA (z) = JA (z
�) +

1

2
J 00A (z

�) "2 + o
�
"2
�
> JA (z

�) ;

so this extreme z� cannot be a maximum over the interval, either. Thus, JA has an interior
maximum in the interval. Denote this maximum z��. We have J 0A (z

��) = 0. This yields a

12



contradiction because it implies J 00A (z
��) > 0; or z�� is a local minimum.

We have established that J 0A (z) > 0 8z 2 (KB; KA). The argument for J 0B (z) < 0 8z 2
(KB; KA) is analogous.
The proof for the case rA = 0 is easier. For example, if there exists z� 2 [KB; KA] such that
J 0A (z

�) = 0, then, as derived in (14)

jJ 00A (z)j � 3x jJ 0A (z)j :

Again, by applying the Gronwall�s inequality, we have J 0A (z) = 0 8z 2 [KB; KA] : But we
know that,

JA (KB) = 0 < PA = JA (KA)

and hence we have a contradiction. It follows that J 0A (z) > 0 8z 2 [KB; KA]. The argument
for J 0B (z) < 0 8z 2 (KB; KA) is analogous.
Steps of the proof of Theorem 1. The steps of the existence proof are the following. I
will show that there exist constants P;M and a globally bounded vector-valued function g
satisfying
1)8 jJij � P; jJ 0i j �M; i = A;B

g

��
JA
JB

�
;

�
J 0A
J 0B

��
=
2

�2

�
rAJA
rBJB

�
+
2

�2
F

�
J 0A
J 0B

�
:

However, g can be di¤erent from the right hand side outside this region
2)Any solution to the boundary value problem�

J 00A (z)
J 00B (z)

�
= g

��
JA
JB

�
;

�
J 0A
J 0B

��
Ji (Ki) = Pi and Ji (K�i) = 0 for i = A;B (15)

will satisfy jJi (z)j � P; jJ 0i (z)j �M; i = A;B 8z 2 [KB; KA]
Therefore, any solution to the boundary value problem (15) is also a solution to the original
problem (8).
In order to prove the existence and the uniqueness of the solution to the boundary problem

(8); we �rst provide a bound on the e¤ort intensity of each �rm.

Lemma 4 There exists some M depending only on PA; PB; KA; KB and c (:) such that 0 <
J 0A (z) ;�J 0B (z) < M 8z 2 (KB; KA)

Proof. Let D (z) = JA (z)� JB (z) then D0 (z) = J 0A (z)� J 0B (z) and 0 < J 0A (z) ;�J 0B (z) <
D0 (z) : Substituting the e¤ort functions (6) into the Hamilton-Jacobi-Bellman equation (8);
we have:

J 00A (z) =
2rA
�2
JA (z) +

2

�2

�
�cA ((fA (J 0A (z)))) + (fA (J 0A (z))) J 0A (z)

� (fB (�J 0B (z))) J 0A (z)

�
J 00B (z) =

2rB
�2
JB (z) +

2

�2

�
�cB ((fB (�J 0B (z))))� (fB (�J 0B (z))) J 0B (z)

+ (fA (J
0
A (z))) J

0
B (z)

�
:
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By subtracting these two equalities, we obtain

jD00 (z)j � 2max frAPA; rBPBg
�2

+
2

�2

��
(c0A)

�1
(D0 (z))

�
D0 (z) +

�
(c0B)

�1
(D0 (z))

�
D0 (z)

�
;

where P = max (PA; PB) :This is due to the facts that

0 � �cA ((fA (J 0A (z)))) + (fA (J 0A (z))) J 0A (z) � (c0A)
�1
(J 0A (z)) J

0
A (z)

0 � (fB (�J 0B (z))) J 0A (z) � (c0B)
�1
(�J 0B (z)) J 0A (z)

0 � �cB ((fB (�J 0B (z))))� (fB (�J 0B (z))) J 0B (z) � (c0B)
�1
(�J 0B (z)) (�J 0B (z))

0 � � (fA (J 0A (z))) J 0B (z) � (c0A)
�1
(J 0A (z)) (�J 0B (z))

and

(c0A)
�1
(J 0A (z)) � (c0A)

�1
(D0 (z))

(c0B)
�1
(�J 0B (z)) � (c0B)

�1
(D0 (z)) :

By the mean value theorem, there exists a z� 2 (KB; KA) such that D0 (z�) = PA+PB
KA�KB

.
8z 2 [KB; KA]. It then follows that

PA + PB

>

����Z z

z�
D0 (t) dt

����
>

�����
Z z

z�
D0 (t)

D00 (t)
2maxfrAPA;rBPBg

�2
+ 2

�2

��
(c0A)

�1 (D0 (z))
�
D0 (z) +

�
(c0B)

�1 (D0 (z))
�
D0 (z)

�dt�����
D0(t)=s
=

�����
Z D0(z)

PA+PB
KA�KB

sds
2maxfrAPA;rBPBg

�2
+ 2

�2

��
(c0A)

�1 (s)
�
+
�
(c0B)

�1 (s)
��
s

����� :
The last equality is a result of a change of integration variables from t to s = D0 (t):
D0 (t)D00 (t) dt = D0 (t) dD0 (t). Assumption 2 implies thatZ 1

PA+PB
KA�KB

sds
2maxfrAPA;rBPBg

�2
+ 2

�2

��
(c0A)

�1 (s)
�
+
�
(c0B)

�1 (s)
��
s
= +1:

Thus, there exists an M such thatZ M

PA+PB
KA�KB

sds
2maxfrAPA;rBPBg

�2
+ 2

�2

��
(c0A)

�1 (s)
�
+
�
(c0B)

�1 (s)
��
s
= PA + PB:

We conclude that
D0 (z) < M 8z 2 (KB; KA) :

Using these bounds on J 0A (z) and J
0
B (z) ; we now can prove the existence of a solution

for any value of ri; Pi; Ki:
7To this end, the following classical lemma from (G.Scorza-Dragoni

1935) will be useful:

7This proof follows closely Hartman (1960)
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Lemma Let g (t; x; x0) be a continuous and bounded (vector-valued) function for 0 � t �
T and arbitrary (x; x0). Then, for arbitrary x0 and xT the system of di¤erential equations

x00 = g (t; x; x0)

has at least one solution x = x (t) satisfying

x (0) = x0; x (T ) = xT :

It is been pointed out by Bass (1958) that this lemma is easily derived from the Schauder�s
�xed point theorem. In order to use this lemma, we need to transform the system (8) into

a bounded system over
�
JA
JB

�
and

�
J 0A
J 0B

�
.

Proof of the Theorem 1. First, we can easily �nd two bounded, strictly increasing and
in�nitely di¤erentiable functions '; � such that

' (x) = x if jxj � P and j'0j � 1
� (x) = x if jxj �M and j�0j � 1

Consider the function

g

��
JA
JB

�
;

�
J 0A
J 0B

��
=

2

�2

�
rA' (JA)
rB' (JB)

�
+
2

�2
F

�
� (J 0A)
� (J 0B)

�
:

Since '; � are bounded g is bounded, then by the Lemma from (G.Scorza-Dragoni 1935),
the boundary value problem�

J 00A
J 00B

�
= g

��
JA
JB

�
;

�
J 0A
J 0B

��
�
JA (KB)
JB (KB)

�
=

�
0
PB

�
;

�
JA (KA)
JB (KA)

�
=

�
PA
0

�

has at least one solution
�
JA (z)
JB (z)

�
KB � z � KA. We can proceed exactly the same way as in

the proof of Lemma 1 and 4 to show that 0 < JA (z) ; JB (z) < P and 0 < J 0A (z) ;�J 0B (z) <

M; so
�
JA (z)
JB (z)

�
KB � z � KA is also the solution to the original system.

In order to prove uniqueness, we use theorem XII-4.38 from (Hartman 1964, pg. 425).

8Theorem XII-4.3 (Hartman 1964, pg 425 )Let f (t; x; x0) be continuous for 0 � t � p and for (x; x0)
on some 2d-dimensional convex set. Let f (t; x; x0) have continuous partial derivatives with respect to the
components of x and x0. Let the Jacobian matrices of f with respect to x,x0

B (t; x; x0) = @xf (t; x; x
0)

F (t; x; x0) = @x0f (t; x; x
0)
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Proof of Theorem 2. In order to apply the Theorem XII - 4.3 (Hartman 1964, pg. 425),
we need to verify the condition

2

�
B � 1

4
FF �

�
s:s > � �2

(KA �KB)
2 ksk

2 ; (16)

where

B (J; J 0) =

�
2rA
�2

0
0 2rB

�2

�
and

F (J; J 0) =
2

�2

0B@(c0A)�1 (J 0A)� (c0B)�1 (�J 0B) � J 0A

c00B

�
(c0B)

�1
(�J 0B)

�
� J 0B

c00A

�
(c0A)

�1
(J 0A)

� (c0A)
�1 (J 0A)� (c0B)

�1 (�J 0B)

1CA :
Given that 0 < J 0A;�J 0B < M we have

(FF �s) :s � 1

�2

�
max

n
(c0A)

�1
(M) ; (c0B)

�1
(M)

o
+
M

�

�
ksk2 :

Together with (Bs) :s � 2minfrA;rBg
�2

ksk2, we have (10) implies (16).
Proof of Lemma 2. First we show that, whenever xA (z) = xB (z) = x, we have

x0A (z) > 0 > x
0
B (z) : (17)

Indeed, we have

x0A (z) =
d

dz

�
(c0A)

�1
(J 0A (z))

�
=

J 00A (z)

c00A (xA (z))
:

Using J 00A (z) from (4) we have

x0A (z) =
2

�2
� (xA (z)� xB (z)) J 0A (z) + rAJA (z) + cA (xA (z))

c00A (xA (z))

=
2

�2
rAJA (z) + cA (x)

c00A (x)
> 0:

satisfy

2

�
B � 1

4
FF �

�
z:z > ��

2

p2
kzk2

for all constant vectors z 6= 0. Then the boundary value problem

x00 = f (t; x; x0)

x (0) = x0

x (p) = xp

has at most one solution.
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Similarly

x0B (z) =
d

dz

�
(c0B)

�1
(�J 0B (z))

�
=

�J 00B (z)
c00B (xB (z))

= � 2

�2
rBJB (z) + cB (x)

c00B (x)
< 0:

So (17) at z = z� implies that x0A (z
�) > xB (z

�). As a result, there exists an � > 0 such that
xA (z) > xB (z) over (z�; z� + �). We prove the lemma by contradiction. Suppose that there
exists an z > z� + � such that xA (z) � xB (z). Let z�� be the in�mum of these z�s, we have

xA (z
��) = xB (z

��) :

However, (17) at z = z�� implies that x0A (z
��) > xB (z

��), so there exists an �0 > 0 such that
xA (z) < xB (z) over (z�� � �0; z��). This contradicts the fact that z�� is the in�mum. So
xA (z) > xB (z) for all z > z�. Similarly we have xA (z) < xB (z) for all z < z�:
Proof of Proposition 1. 1) We rewrite equation (4) for B:

�rBJB (z)� cB (xB (z)) + (xA (z)� xB (z)) J 0B (z) +
�2

2
J 00B (z) = 0:

so
�2

2
J 00B (z) = rBJB (z) + cB (xB (z)) + (xA (z)� xB (z)) (�J 0B (z)) > 0:

Given that xA (z) > xB (z) and J 0B (z) < 0, together with JB (z) > 0 and cB (xB (z)) > 0
from Lemma 1, we have J 00B (z) > 0. As a result, J

0
B (z) is strictly increasing over (z

�; KA] or
xB (z) = (c

0
B)
�1(�J 0B (z)) is strictly decreasing over the same interval.

2) We rewrite equation (4) for A:

�rAJA (z)� cA (xA (z)) + (xA (z)� xB (z)) J 0A (z) +
�2

2
J 00A (z) = 0

Di¤erentiate with respect to z

�rAJ 0A (z) + f�c0A (xA (z)) + J 0A (z)gx0A (z)� xB (z) J 00A (z)� x0B (z) J 0A (z) +
�2

2
J 000A (z) = 0

given that �c0A (xA (z)) + J 0A (z) = 0. This simpli�es to

�2

2
J 000A (z) = �rAJ 0A (z) + xB (z) J 00A (z) + x0B (z) J 0A (z) :

Part 2) implies that x0B (z) < 0 so if J
00
A (z) � 0 and rA = 0, then J 000A (z) � 0 or

J 00A (z
0) � 0 8z0 � z;

that is J 0A (z) is decreasing over (z;KA]. Notice that when rA > 0, rAJ 0A (z) > 0; the
statement above does not always hold: Discounting reduces the discouragement e¤ect on
the leader.
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Proof of Lemma 3. Given that the upper bound x is not binding in equilibrium, (5)
implies a linear relationship between e¤orts and slopes of the payo¤ functions:

xA (z) = �AJ
0
A (z) and xB (z) = ��BJ 0B (z) : (18)

As a result (9) simpli�es to

F

�
u
v

�
=

�
��u2 � 2�uv
�2�uv � �v2

�
:

Let eJi (z) = �i
�2
Ji (�z) ; the boundary conditions become

eJi�K�i

�

�
= 0; eJi�Ki

�

�
=
�iPi
�2

= ePA
and the di¤erential equations on Ji (z), i 2 fA;Bg become

�2r eJi (z) + � eJ 0i (z)�2 + 2 eJ 0i (z) eJ 0�i (z) + eJ 00i (z) = 0

8z 2 (KB; KA) (19)

We can see immediately that this system of equations and the boundary conditions are
equivalent to the ones resulting from the game with

e�A = e�B = e� = 1ePi =
�iPi
�2

:

Closed form Derivation. Substituting the functional forms of the cost functions into
(5), we have

xA (z) = J
0
A (z) and xB (z) = �J 0B (z) : (20)

Denote x = xA and y = xB. Di¤erentiating both sides of (20) gives J 00A (z) = x0 (z) and
J 00B (z) = �y0 (z). Thus, we can rewrite (19) as a system of �rst-order di¤erential equations
with the unknown strategy functions x and y :

1

2
x2 � xy + 1

2
x0 = 0

1

2
y2 � xy � 1

2
y0 = 0: (21)

We derive the boundary conditions for (21) using Lebnitz�s rule:

PA = JA (KA)� JA (KB) =

Z KA

KB

J 0A (z) dz

and

PB = JB (KB)� JB (KA) = �
Z KA

KB

J 0B (z) dz:
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We can rewrite these conditions using the strategies function x and y:Z KA

KB

x (z) dz = PAZ KA

KB

y (z) dz = PB: (22)

Let us de�ne the function g as
g =

x

y
; (23)

g is well-de�ned since y > 0. We will �nd an explicit relationship between g and y. From
the de�nition of g we have:

x0 (z) = g0 (y) y0 (z) y (z) + g (y) y0 (z) :

so

g0 (y) y = g (y)
1 + g (y)

1� 2g (y) :

Rewrite this in a di¤erential form:

dg (1� 2g)
g (g + 1)

=
dy

y

or equivalently
d (ln g � 3 ln (g + 1)) = d (ln y) :

This di¤erential equation implies

C1g (y)

(g (y) + 1)3
= y; (24)

where C1 > 0 is a constant pinned down by the boundary conditions. So, combining (23) and
(24) yields the strategy functions (12) in the text. Now with these expressions, we determine
g as a function of z. Di¤erentiate the expression for x from (12) with respect to z implies

x0 = g0
C1 (2 (g + 1)� 3g) g

(g + 1)4
:

Plugging this expression for x0 into (21) and simplifying give

dg

dz
=

C1g
2

(g + 1)2
: (25)

or equivalently

d

�
� 1

g (z)
+ 2 ln (g (z)) + g (z)

�
= C1dz:

So we obtain �nally

g (z)� 1

g (z)
+ 2 ln g (z) = C1z + C2: (26)
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Again, the constant C2 is pinned down by the boundary conditions. We come back to write
equations determining C1 and C2 using (22): The previous closed-form yields

KAZ
KB

x (z) dz =

KAZ
KB

C1g (z)
2

(g (z) + 1)3
dz

Using the change of variable z = z (g) and the di¤erential form (25). The integral on x
becomes

KAZ
KB

x (z) dz =

KAZ
KB

C1g (z)
2

(g (z) + 1)3
dz =

g(KA)Z
g(KB)

1

(g + 1)
dg

= ln

�
1 + g (KA)

1 + g (KB)

�
= PA

Similarly

KAZ
KB

y (z) dz =

KAZ
KB

C1g (z)

(g (z) + 1)3
dz =

g(KA)Z
g(KB)

1

(g + 1) g
dg

= ln

�
g (KA)

g (KB)

�
� ln

�
1 + g (KA)

1 + g (KB)

�
= PB

These equations give a system of equations on g (KA) and g (KB)

1 + g (KA)

1 + g (KB)
= exp (PA)

g (KA)

g (KB)
= exp (PA + PB) :

We can then solve for g (KA) and g (KB) explicitly in functions of KA; KB; PA; PB

g (KA) =
exp (PA + PB)� exp (PB)

exp (PB)� 1
; (27)

and

g (KB) =
exp (PA)� 1

exp (PA + PB)� exp (PA)
: (28)

Together with the two equations (26) on g at z = KB and KA; C1 and C2 are then

C1 =
1

KA �KB

0BBBBBB@

exp(PA+PB)�exp(PB)
exp(PB)�1

� exp(PB)�1
exp(PA+PB)�exp(PB)

� exp(PA)�1
exp(PA+PB)�exp(PA)

+ exp(PA+PB)�exp(PA)
exp(PA)�1

+2PA + 2PB

1CCCCCCA ; (29)
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and

C2 =
1

KA �KB

0BBBBBBBBBB@

KA

0BB@
exp(PA)�1

exp(PA+PB)�exp(PA)
� exp(PA+PB)�exp(PA)

exp(PA)�1

+2 ln
�

exp(PA)�1
exp(PA+PB)�exp(PA)

�
1CCA

�KB

0BB@
exp(PA+PB)�exp(PB)

exp(PB)�1
� exp(PB)�1
exp(PA+PB)�exp(PB)

+2 ln
�
exp(PA+PB)�exp(PB)

exp(PB)�1

�
1CCA

1CCCCCCCCCCA
: (30)
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