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Abstract

This paper proves an equilibrium selection result for a class of games with strategic substi-

tutes. Specifically, for a general class of binary action, N-player games, we prove that each

such game has a unique equilibrium strategy profile. Using a global game approach first

introduced by Carlsson and van Damme (1993), recent selection results apply to games with

strategic complementarities. The present paper uses the same approach but removes the

assumption of perfect symmetry in the dominance region of the players’ payoffs. Instead

we assume that players are ordered such that asymmetric dominance regions overlapped

sequentially. This allow us to extend selection results to a class of games with strategic

substitutes.
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1 Introduction

In general, game-theoretic models are developed under the assumption that the ra-

tional behavior of the players and the structure of the game are common knowledge.

Since these assumptions might be too stringent for modeling real-life players, it is

important to know whether the prediction of a game substantially changes in com-

parison to the predictions of a slightly altered version of the same game1. If indeed it

turns out that only certain of the game’s equilibria survive this “robustness check,”

then we may reasonably refine our prediction of what happens in such games.

This paper examines the dual issues of equilibrium selection and robustness in

a class of games with strategic substitutes. These are games in which each player’s

marginal payoff from increasing his own action is decreasing in the other players’

actions. The standard example is the game of voluntary contribution toward a public

good. The equilibria exhibit a classical free rider problem: an individual is less willing

to contribute the larger is the total contribution of others. If one’s contribution is

an indivisible choice such as a unit of time or effort, then voluntary contribution

games typically exhibit multiple Nash equilibria, each corresponding to a distinct

configuration of contributors and non-contributors.

To examine equilibrium selection in games such as these, we follow the Global

Games approach pioneered by Carlsson and van Damme (1993).2 The idea in this

approach is to examine Nash equilibria as a limit of equilibria of payoff-perturbed

games. More formally, suppose G is a standard game of complete information where

the payoffs depend on a parameter x ∈ IR, and also suppose that for some subset of the
parameter x, G has a strict Nash equilibrium. Rather than observing the parameter

x, suppose instead that each player observes a private signal xi = x + σεi where

1Examples in this direction are the seminal contributions of Harsanyi’s games with randomly dis-
turbed payoffs (Harsanyi (1973)), and Selten’ concept of trembling hand perfection (Selten (1975)).

2For an excellent description and survey of the ensuing literature see Morris and Shin (2000).
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σ > 0 is a scale factor and εi is a random variable with density φ. Denote this

“perturbed game” by G(σ), and let NE(G) and BNE(G(σ)) denote the sets of Nash

and Bayesian Nash equilibria of the unperturbed and perturbed games, respectively.

Equilibrium selection is obtained when limσ→0BNE(G(σ)) is a subset of NE(G).

Carlsson and van Damme (1993) show, in fact, that for two-player, two-action

games, this limit comprises a single equilibrium profile. Moreover, this equilibrium

profile is obtained through iterated deletion of strictly dominated strategies. Roughly,

the deletion requires that, for each player and for each action of that player, there are

certain extreme values of the parameter, x, for which that action is strictly dominant.

Even if these values carry very little probability weight, the players can use signals

close to these “dominance regions” to rule out certain types of behavior of others.

Hence, the iterative deletion proceeds.

Recently, these results have been extended by Frankel, Morris and Pauzner (2002)

for games with many players and many actions. However, existing results in this

literature are tipically limited to the case of strategic complementarities (and some

other technical assumptions). This strong result is very useful for many games such

as bank run models (Goldstein and Pauzner (2000)), currency crises games (Morris

and Shin (1998)), etc.

Yet, there is a wide class of games where this condition is not satisfied. The

voluntary provision example mentioned above is but one example. Of course in the

two player case, the game can be represented as a game of strategic complements by

just reordering the set of actions. However, in games with more than two players ,

the analysis has not been extended to games of strategic substitutes.

The key insight in the present paper is to show how global games ideas can apply

to certain games of strategic substitutes when the players’ payoffs display a certain,

commonly known asymmetry. Specifically for a class of binary actions games, we

assume that there exists an ordering of players such that each player’s dominance
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region is an arbitrary displacement to the right of the “previous” player’s dominance

region, i.e. the values of x at which some player’s upper dominance region begins

and at which his lower dominance region finishes are strictly higher (lower) compared

to those of any lower (higher) player. Under these assumptions and some other

technical properties, the main result of the paper proves that there exists a unique

equilibrium profile. Specifically, we show that as the noise goes to zero, a process of

iterated elimination of conditionally dominated strategies converges to a single profile

of switching strategies. In such a profile, each player has a threshold, cutoff signal

above which he takes the higher (contributing) action, and below which the lower

(non-contributing) action is taken. A very important characteristic of this profile is

that each player has a different cutoff point. Interestingly, the order of these cutoff

points is the same order that the players have. That is, the lower the player in

the ordering, the smaller is his threshold. More precisely, the equilibrium predicts

that the first player switches at the end of his lower dominance region, the last player

switches at the beginning of his upper dominance region and all the other players have

switching points in between these two. Intuitively, the equilibrium selected establishes

that, if there are certain number of players choosing the contributing action, it must

be the case that they are the lowest according to the players’ order, conditional on

the value of the parameter. Therefore, depending on the specific payoff structure of

the game, the equilibrium profile structure might play an interesting role from an

efficiency point of view. The result suggests that common knowledge of the order of

players and global games structure are sufficient conditions to select not only a unique

but also an ordered equilibrium.

As an introductory example, in Section 2, we present a game of public good

provision, where all the assumptions are satisfied. The main result for this game

is that for general distributional properties of the signal noise, there exists a unique

strategy profile played in equilibrium. This profile induces an efficient provision of the
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public good, and the contributions come from the lowest cost contributors. This result

suggests that inefficient contribution equilibria survive only under a pair of stringent

assumptions: common knowledge of the fundamentals, and perfect symmetry in the

players’ characteristics. In section 3 we present this general framework and establish

our main result. In sections 4 we develop the main steps of the proof and finally, in

section 5 we presents the conclusions. Proofs of propositions and lemmas are relegated

to the appendix.

2 Example: Public Good Provision

In many collective action problems multiple Nash equilibria may exist, each corre-

sponding to a different configuration of contributors. Many of these equilibria are

inefficient since individuals with a higher marginal cost of contributing end up con-

tributing disproportionately. Here, we prove a result that suggests that these ineffi-

cient Nash equilibria are not robust.

We develop a binary action game of incomplete information in which the mecha-

nism for public good provision utilizes both government and voluntary contributions.

In particular, to fund a public good, a government pledges “seed money” which must

be augmented by funds from private contributors. Each contributor, upon receiving

a private signal of the amount of this pledge, then chooses whether to contribute.

Agents have costs of contributing.

2.1 The Game

Consider the following N person game MN . A government (or a social planner) de-

cides to provide a public good G, requiring society’s contribution. The society is

composed by N different individuals indexed by i = 1, 2..., N. Each agent has to

decide whether to contribute, choosing an indivisible action ai from the binary set
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Ai = {1 = contribute, 0 = not contribute} .
Let G(x, n) denote the public good technology, where x ∈ £X,X

¤
is the gov-

ernment contribution and n is the number of people who decide to contribute (not

considering the player i). Without loss of generality we can characterize the payoffs

as follows: if the agent i chooses to contribute, he has to provide an effort (contribu-

tion) ci > 0, and receives a utility G(x, n + 1) − ci. On the other hand, if the same

agent chooses not to contribute (free ride), he will receive a utility G(x, n). Let be

∆G(x, n) = G(x, n+1)−ci−G(x, n) the player i’net payoff from contributing. Finally,
the assumptions about the mechanism are the following:

(a.1) Strategic Substitutes. The greater the number of people contributing

the smaller is player i’s incentive to contribute.

∆G(x, n) < ∆G(x, n− 1)
Where G(x, n = 0) ≥ 0.
(a.2) Continuity and Differentiability

∀n G(x, n) is a continuous and differentiable function of x.

(a.3) Monotonicity

∆G(x, n) is an increasing function of x. i.e. ∂∆G(x,n)
∂x

> 0 ∀x ∈ £X,X
¤
.

(a.4) Dominance Regions. Conditional on the value of the government con-

tribution: ∃ ki < X solving ∆G(x,N − 1) = 0, i.e. ∀x > ki action 1 is a strictly

dominant strategy, and ∃ ki > X solving ∆G(x, 0) = 0, i.e. ∀x < ki action 0 is a

strictly dominant strategy.

Assumption (a.1) states the condition in the payoff structure such that this game

is a game of strategic substitutes. In general, the greater the other players’ strategy

profile, the smaller is player i’s incentive to increase his strategy. Assumption (a.2)

establishes a continuity and differentiability condition in the government contribu-

tion variable (the exogenous parameter), while (a.3) establishes that the higher the
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government’s contribution, the greater the player’s incentive to contribute. Finally,

assumption (a.4) requires that for a sufficiently high (low ) values of the govern-

ment contribution, player i will always (never) contribute, i.e. (not) contributing is a

strictly dominant strategy.

2.2 Incomplete Information

Suppose now that the game is characterize by incomplete information in the payoff

structure. Instead of observing the actual value of the government contribution x,

each player just observes a private signal xi, which contains diffuse information about

x. The signal has the following structure: xi = x+σεi, where σ > 0 is a scale factor,

x is drawn from
£
X,X

¤
with uniform density and εi is an independent realization of

the density φ with support in [−1
2
, 1
2
]. We assume εi is i.i.d. across the individuals.

In this context of incomplete information, a Bayesian pure strategy for player

i is a function si : [X − 1
2
σ,X + 1

2
σ] → Ai, and Si is the set that contain all such

strategies. A pure strategy profile is a vector s = (s1, s2,...sN), where si ∈ Si for all i

and equivalently define s−i = (s1, s2, ..si−1, si+1, ...sN) ∈ S−i.

Defining this game of incomplete information as MN(σ), let us defineBNE(MN(σ))

as the set of Bayesian Nash equilibria of MN(σ). For simplicity we will restrict the

analysis to the two player case, but the extension to the many players case is a direct

application from of our main result.

2.3 Two Player Case

We can represent the two player case in the following normal form:
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Player 2

Player 1

a2 = 1 a2 = 0

a1 = 1 G(x, 2)− c1, G(x, 2)− c2 G(x, 1)− c1, G(x, 1)

a1 = 0 G(x, 1), G(x, 1)− c2 G(x, 0), G(x, 0)

First suppose c1 = c2, the symmetric case. Then both players have the same

payoff and dominance regions. In figure 1, we graphically describe the dominance

region structure of the game, where the cutoff points are the same (i.e. k1 = k2 = k

and k1 = k2 = k). Thus, if x > k (x < k) both players are in the upper (lower)

dominance region.

In the case of complete information about x, the set of Nash equilibria has the

following structure:

• For values of x in the dominance regions, both players choose the dominant
action. In figure 1 the dashed lines denote the value of x for which player 1 is

choosing a dominant action, and solid lines denote when player 2 is choosing

dominant actions. Therefore in each dominance region there exists a unique

action profile in equilibrium: a = (a1 = 1, a2 = 1) in the upper region and

a = (a1 = 0, a2 = 0) in the lower region.

• If x takes values in the interval ¡k, k¢ there are two pure strategy Nash equilibria,
where one player chooses to contribute and the other chooses not to contribute.

The feasible profiles played in equilibrium are either a = (a1 = 1, a2 = 0) or

a = (a1 = 0, a2 = 1)

This Nash equilibria structure suggests two important observations. First, the

Carlsson and van Damme equilibrium selection result can not be applied to this game
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=ia 1 

Player 2 Player 1 

=ia 0 

Figure 1: Symmetric Case

because it requires that a selected equilibrium be a unique Nash equilibrium for some

subset of values of the exogenous parameter (x in this case). In this game, neither

the strategy profile a = (0, 1) nor a = (1, 0) is a unique Nash equilibrium for some

value of x. Second, for x ∈ ¡k, k¢ this symmetric case not only implies multiplicity,
but also that each of the equilibria has an asymmetric structure where just one of

the players contributes. This suggests that it is likely that asymmetry will play an

important role in any equilibrium selection attempt.

Let us introduce asymmetry in the payoff structure of the game. Suppose now

that c2 > c1, and without loss of generality let us assume c1 = c and c2 = (1 + δ)c

where δ > 0.

In figure 2 we can observe that the asymmetry generates the overlapping of the

dominance regions. A very important consequence of this fact is the generation of

a subset of values of x, (k1, k2) ∪ (k1, k2), where the profile a = (1, 0) is the unique
equilibrium. This enable us to apply the Carlsson and van Damme result.

Define s∗ as a particular profile of switching strategies, such that player 1 and

player 2 switches from action 0 to action 1 at the cutoff points k1 and k2 respectively.
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Figure 2: Asymmetric Case

We can summarize the result in the following proposition:

Proposition. Consider a game M2(σ) satisfying assumptions (a1) to (a4).

There exists a unique strategy profile s∗ that survives iterated deletion of the strictly

dominated strategies for a sufficient small amount of noise, so that ∃ σ > 0, s.t.

∀σ ∈ (0,σ), BNE(M2(σ)) = {s∗}.

Figure 3 shows the structure of the equilibrium profile s∗: player 1 switches from

not contributing to contributing at k1; and player 2 switches at k2. It is important to

notice that this strategy profile induces an efficient provision of the public good, and

that the contributions come from the lowest cost contributors. The result suggests

that inefficient contribution equilibria survive only under a pair of stringent assump-

tions: common knowledge of the fundamentals, and perfect symmetry in the players’

characteristics.

Since the existence of overlapped dominance regions allowed us to select a partic-

ular equilibrium, it suggests that generalizing this payoff structure, under the global

games approach, we can prove the existence of a unique equilibrium in a more general
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Figure 3: Equilibrium Selection: Two Players Case

class of games with strategic substitutes.

The next sections develop a more general framework, states and prove our main

result: the existence of a unique equilibrium profile in certain class of global games

with strategic substitutes.

3 General Framework

Consider the following general setup for an N person game GN . There are N anony-

mous players indexed by i and each player has a binary set of actions Ai = {0, 1}.3
Player i’ payoff function is πi(ai, n, x) where ai ∈ Ai, n ∈ {0, ..., N −1} is the number
of players (other than i) that are choosing action 1 and x is an exogenous variable

which takes values in the interval [X,X] ⊂ IR.
Finally let us define ∆πi(n, x) = πi(1, n, x)− πi(0, n, x) as agent i’s payoff differ-

ence when he is choosing action 1 rather than action 0. We consider the following

assumptions for the payoff structure:

3We will also refer to ai = 0 as the “lower” action and ai = 1 as the “higher” action.
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(A1). Strategic Substitutes (SS). Conditional on the value of x, the greater

the other players’ strategy profile, the smaller is player i’s incentive to choose the

higher action:

If n > n0 ∆πi(n, x) < ∆πi(n
0, x) ∀x.

(A2). Continuity (C)

πi(ai, n, x) is a continuous function of x.

(A3). Monotonicity (M). The greater the value of the exogenous variable x,

the greater the player i’s incentive to choose the higher action:

∃ c > 0 s.t. if x, x0 ∈ [X,X] and x ≥ x0 , then

∆πi(n, x)−∆πi(n, x
0 ) ≥ c(x− x0 ) ∀n.

(A4). Upper and Lower Indifference Signals (IS). If other players are

choosing identical actions, there exists a unique value of x such that player i is

indifferent between the two actions:

∀i ∃ ki > X s.t. ∆πi(0, ki) = 0 and ∃ ki s.t. X > ki > ki s.t. ∆πi(N−1, ki) = 0.
(A5). Player Order (PO) Player j will be “greater” than player i, if for both

players observing the same value of x and facing the same strategy profile, player j

has less incentive to pick the higher action (i.e. gets a lower net payoff):

There exists a players order {1, ..., N} such that ∃ α > 0 s.t if j > i then

∆πi(n, x)−∆πj(n, x) > α ∀i, j ∀n.

An important remark is that assumptions A1 (SS), A3 (M) and A4 (IS) provide

sufficient conditions for the existence of dominance regions, along which each action

is strictly dominant. This fact provides this setup with the necessary global game

structure, i.e. ∀x < ki ∆πi(n, x) < 0 and ∀x > ki ∆πi(n, x) > 0 ∀n.
Additionally, these assumptions allow us to state a more general single crossing

property, which will help to characterize the equilibrium profile:

Lemma 1. There exists a unique ex ∈ [X,X] solving ∆πi(n, ex) = 0.
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Figure 4: Player i’s payoffs dependence on x

Therefore ∆πi(n, x) < 0 ∀x < ex and ∆πi(n, x) > 0 ∀x > ex ∀i ∀n.
In figure 4, we can observe how player i’s payoffs depend on x. From lemma 1 we

know that for all n there exists a unique ex such that player i is indifferent between
the two actions, i.e. given n, player i’s best response is to switch from the lower action

to the higher action at a unique value of the signal. Given assumption A3 (M) we

can also conclude that the net payoff function is monotonic in x and by assumption

A1 (SS) we know that for different n the net payoff functions do not intersect each

other.

Assumption A5 (PO) directly implies that if j > i then kj > ki and kj > ki.4

In figure 5, for a three player case, we can observe a direct consequence of this

assumption: sequentially overlapped dominance regions. Therefore assumption A5

(PO) provides the necessary asymmetry in the game.

The last important remark about the assumptions is contained in the following

lemma:

Lemma 2. ∃ σ0 > 0 s.t.∀σ ∈ (0, σ0), ∀j, i if j > i and xj − xi < σ,

then ∆πi(n, xi)−∆πj(n, xj) > 0 ∀n.
4Without loss of generality in the analysis we will assume the case where kN < k1, excluding the

trivial situations where kN > k1, i.e. player N ’s lower dominance region does not overlap player
1’s upper dominance region.
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Figure 5: Overlapped Dominace Regions: Three Players Case

From assumption A5 (PO), we know that if two players face the same strategy

profile and the same value of x, the “greater” player will get a lower net payoff. This

lemma states that this is still true even when they face different values of x, such that

their difference is less than σ0.

3.1 Incomplete Information

Suppose now that the game is one of incomplete information in the payoff structure.

Instead of observing the actual value of x, each player just observes a private signal

xi, which contains diffuse information about x. We assume that this is a game of

private values, where each player gets utility directly from the signal rather than the

actual value of the variable.5

The signal has the following structure: xi = x + σεi, where σ > 0 is a scale

factor, x is drawn from the interval [X,X] with uniform density, and εi is a random

5Even though we have not proven that our main result is robust to this assumption, it is simple
to model the private value case as a limit of the common values case (when players derive utility
from the actual value of the variable) as the noise goes to zero (σ → 0). This approach has been
used in the global game literature. (Carlsson and van Damme (1993), Morris and Shin (2000) and
Frankel, Morris and Pauzner (2002).)
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variable distributed according to a continuous density φ with support in the interval

[−1
2
, 1
2
].We assume εi is i.i.d. across the individuals.

This general noise structure has been used in the global game literature, allowing

the conditional distribution of the opponents signal to be modelled in a simple way,

i.e. given a player’s own signal, the conditional distribution of an opponent’s signal xj

admits a continuous density fσ and a cdf Fσ with support in the interval [xi−σ, xi+σ].
Moreover this literature establishes a significant result: when the prior is uniform,

players’ posterior beliefs about the difference between their own observation and other

players’ observations are the same,6 i.e. Fσ(xi | xj) = 1− Fσ(xj | xi).
In this context of incomplete information, a Bayesian pure strategy for a player i is

a function si : [X − 1
2
σ,X + 1

2
σ]→ Ai, i.e. conditional on receiving a signal xi player

i takes an action si(xi) = ai ∈ {0, 1} . A pure strategy profile is denoted as s =

(s1, s2,...sN) where si ∈ Si and equivalently we define s−i = (s1, s2, ..si−1, si+1, ...sN) ∈
S−i.

A switching strategy is a Bayesian pure strategy si satisfying : ∃ ki s.t.

si(xi) =

 1 if xi > ki

0 if xi < ki

Abusing notation, we write si(·; ki) to denote the switching strategy with switching
threshold ki.

In this context of incomplete information, player i’s payoff is characterized by

his beliefs about his opponents strategies. In general, if player i is observing a signal

xi and is facing a strategy s−i his expected net gain of choosing action 1 instead of

action 0 can be written as
6This property holds approximately when x is not distributed with uniform density but σ is

small, i.e. F (xi | xj) ≈ 1− F (xj | xi) as σgoes to zero. See details in Lemma 4.1 Carlsson and van
Damme (1993).
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∆Πi(s−i, xi) =
Z
x−i

∆πi(s−i(x−i), xi)dFσ(−i)(x−i | xi)

Calling this game of incomplete information GN(σ), let us define BNE(GN(σ)) as

the set of Bayesian Nash equilibria of GN(σ). The main result of the paper will prove

that GN(σ) has a unique profile played in equilibrium as σ goes to 0. In this profile,

every player will play a switching strategy si(·;x∗i ) where the threshold x∗i solve the

following equation:

∆πi(i− 1, x∗i ) = 0 (1)

This states that, player i will switch from 0 to 1 at x∗i , where x
∗
i is the indifference

point, when he faces a strategy profile such that all the players “lower” than him play

action 1 and all the “higher” players play action 0. From lemma 2 we know that for

all i, x∗i not only exists, but it is also unique.

Let s∗ be the profile such that each player is using a switching strategy si(·;x∗i ).
The main result of the paper is the following theorem:

Theorem. Consider a game GN(σ) satisfying assumptions (A1) to (A5), then

∃ σ > 0 s.t. ∀σ ∈ (0,σ), BNE(GN(σ)) = {s∗} .

This proposition allows us to analyze a wide class of games of strategic substitutes

where multiplicity is a problem, extending the global game literature. In particular

this proposition generalizes the analysis and conclusion developed in the public good

example of section 2; now, lower cost players are represented by a “higher” position

in the players order (according to A5 (PO)), and they will switch between the actions

at a higher threshold.

As an example, in figure 6 we show a three players case. The strategy profile in

equilibrium shows the higher player switching at the beginning of his upper dominance
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Figure 6: Equilibrium Selection: Three Players Case

region, x∗3 = k3. The lower player switches at the end of his lower dominance region

x∗1 = k1, and player 2 switches at x∗2 where k1 < x∗2 <k3.

4 Proof of the Theorem

In this section we develop the main steps of the proof of the theorem. We will argue

that the profile s∗ is the unique profile surviving a particular process of iterated dele-

tion of strictly dominates strategies. We start defining the sequence of undominated

sets. Note however, that these are not the standard undominated sets used to define

iteratively undominated strategies. Instead these are sets defined by an alternative

process that eliminates profiles that are not part of any equilibrium. These strategies

are strictly dominated when we restrict ourselves to considering some subset of others

players’ actions that are “potentially” part of some Nash equilibrium profile. We call

these sets the conditionally iteratively undominated sets.7

We will prove that this process does not rule out any Bayesian Nash equilibria.

7Since the elimination proceeds upon players receiving the signal, then formally these sets contain
strategies that are interim strictly undominated.
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We then proceed to show that, under our mentioned assumptions the strategy profile

surviving the iterated deletion is unique. Hence only one equilibrium survives. We

now describe the structure of the conditionally undominated sets in GN(σ) satisfying

assumption A1 to A5, and then proceed to give a formal proof of the theorem.

4.1 The Conditionally Undominated Profiles

For a given game GN(σ), let us define the process of deletion such that any strategy

profile that survives t rounds of iterated elimination of conditionally strictly domi-

nated strategies is contained in St, where St =
N×
i=1

St
i ∀t (and St

−i = ×
j 6=i

St
j ∀t ∀i).

If player i’ best response correspondence is defined as BRi(s−i) = {si ∈ Si :

Πi(si, s−i, xi) ≥ Πi(s
0
i, s−i, xi) ∀xi ∀s0i ∈ Si}, then the conditionally undominated

sequence {St}∞t=0 is defined as follows:

Set S0i ≡ Si and eS0i ≡ S−i, then ∀t > 0

eSt
−i ≡

©es−i ∈ St
−i : ∃esi ∈ St−1

i s.t. esj = BRj(es−j) ∀j 6= i
ª

(2)

and

St
i ≡


si ∈ St−1

i : @s0i ∈ St−1
i such that

Πi(s
0
i, s−i, xi) ≥ Πi(si, s−i, xi) ∀xi ∀s−i ∈ eSt−1

−i

and with strict inequality for somexi

 (3)

This states that, eSt−1
−i is the set of all others players’ strategy profiles that, for

some strategy si ∈ St−1
i , contains strategies that are mutually best responses (exclud-

ing player i). Recall from section 3.1, that Πi(ai, s−i, xi) represents player i’s expected

payoff when, upon observing a signal xi and facing a strategy s−i, he chooses action

18



ai. Therefore in each round, all the strategies that are strictly dominated when oppo-

nents actions are restricted to those that are “potentially” part of a Bayesian Nash

equilibrium profile, are eliminated.

The following lemma establishes an important characteristic: For a general game

GN(σ) the conditional iterative process of elimination of strategies described above,

does not rule out any Bayesian Nash equilibrium.

Lemma 3. St ⊇ BNE(GN(σ)) ∀t.

Additionally, the following lemma proves that if game a GN(σ) satisfies assump-

tions (A1) to (A5) and, if for some t, player N´s set of undominated strategies con-

tains a unique strategy such that he switches from action 0 to action 1 at kN , then

there exist a unique undominated profile s∗ in St. The profile s∗ is a Bayesian Nash

equilibrium such that each component is a switching strategy where the cutoff solves

equation 1. More formally:

Lemma 4. Consider a game GN(σ) satisfying assumptions (A1) to (A5). Suppose

∃ t such that St
N = {s∗N}, then St = {s∗} and s∗ ∈ BNE(GN(σ)).

4.2 Iterated Elimination of Conditionally Dominated Strategies and Proof

of the theorem.

Now we describe the structure of the undominated set St for a game GN(σ) satisfying

assumption A1 to A5. Let us first define the sequences {xti}∞t=0 ∀i.
Set x0i ≡ −∞, and for t > 0 each element of the sequence is calculated as follows:

xti ≡ min
s−i∈eSt−1−i

{xi : ∆Πi(s−i, xi) = 0}
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Every element of the sequence represent the minimum signal among which the

player is indifferent between the two actions, but now just considering all available

strategies of his opponent that belong to the set eSt−1
−i , i.e. considering just the strategy

profiles that, for some strategy si ∈ St−1
i , contains strategies that are mutually best

responses (excluding player i). Since eSt−1
−i ⊆ eSt

−i it is easy to see that {xti}∞t=0 is an
increasing sequence.

Now, keeping in mind that x∗i is the signal that solves equation 1 and describes

player i’ switching point in the profile of switching strategies s∗, the following lemma

characterize the structure of every set St
i .

Lemma 5. Consider a game GN(σ) satisfying assumptions (A1) to (A5). Then

∃ σ > 0 s.t. ∀σ ∈ (0, σ) the conditionally undominated sequence {St}∞t=0 satisfies:
i) ∀t ∀i
St
i = {si : si(xi) = 0 if xi < min{xti, x∗i } and si(xi) = 1 if xi ∈ (x∗i , xti) ∪

(kN , X + σ)}
and if i > j then xti > xtj.

ii) ∃ t0 s.t. ∀ t ≥ t
0
, xtN = kN

The first part of this lemma describe the structure of every strategy surviving

iterated deletion of conditionally dominated strategies. It shows that, giving xti, every

strategy in St
i plays action 0 for signals less than the minimum between xti, x

∗
i , and

plays action 1 for a signals in his upper dominance region and for signal in the interval

(x∗i , x
t
i). However notice that (x

∗
i , x

t
i) = φ if xti ≤ x∗i . This lemma also establishes that

the greater the player (according to assumption A5) the greater the value of xti, i.e.

the sequences {xti}∞t=0 preserve players’ order.
The second part of the lemma state that player N ’ sequence {xti}∞t=0, reaches his

upper dominance region in a finite number of steps.

In figures 7 and 8 we illustrate the structure of the surviving strategies for the
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Figure 7: Case xt2 < x∗2

three player case. Figure 7 shows the case when xt2 < x∗2 and figure 8 shows the case

when xt2 ≥ x∗2.

Having described and characterized the conditionally undominated sequence

{St}∞t=0 for any game GN(σ), we next state the theorem again and develop the proof.

Theorem. Consider a game GN(σ) satisfying assumptions (A1) to (A5), then

∃ σ > 0 s.t. ∀σ ∈ (0,σ), BNE(GN(σ)) = {s∗} .

Proof. From Lemma 6 it follows directly that ∃ σ > 0 s.t. for all σ ∈ (0,σ) and
∀ t ≥ t

0
St
N = {s∗N}. Therefore using Lemma 5 we can conclude that ∀ t ≥ t

0
St =

{s∗}. Finally from Lemma 4 we know that St ⊇ BNE(GN(σ)) then BNE(GN(σ)) =

{s∗}¥

5 Conclusions

The global game approach is a proven method to incorporate more realistic assump-

tions in game-theoretic models. Assuming a very general payoff structure, the ap-

proach examines Nash equilibria as a limit of equilibria of payoff-perturbed games.

21



   1k                              
tx1  

tx 2  
tx3      1k       2k        3k        ix    

=ia 1 

Player 2 Player 1 

=ia 0 

Player 3 

Figure 8: Case xt2 ≥ x∗2

Carlsson and van Damme (1993) show that in binary action two-player games, there

exists a unique equilibrium profile surviving iterated deletion of strictly dominated

strategies. Recently this result has been generalized by Frankel, Morris and Pauzner

(2002) to many players and actions, but limiting the analysis to games with strategic

complementarities.

Continuing with this line of research, we extend the literature proving an equilib-

rium selection result for a class of global games with strategic substitutes. Assuming

a particular asymmetry in the players’ dominance regions, we prove that for a general

class of binary action, N-player games, each such game has a unique equilibrium strat-

egy profile. This result might allows us to analyze a wide class of games of strategic

substitutes such as collective action problems, entry-exit models in industrial orga-

nization etc. In particular we apply the result to a model of public good provision.

The interesting conclusion to this application is that the equilibrium profile induces

an efficient provision of the public good, and the contributions come from the lowest

cost contributors. In general the result provides a useful tool for applications.

Further research must be devoted to extend the result to games with more than
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two actions and with common values, i.e. where players derive utility from the actual

value of the exogenous parameter rather than the signal.
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6 Appendix

To ease the exposition, we now repeat the formal statement of the proposition and

lemmas 1 to 5 before each of their proofs.

Proposition. Consider a game M2(σ) satisfying assumptions (a1) to (a4).

There exists a unique strategy profile s∗ that survives iterated deletion of the strictly

dominated strategies for a sufficient small amount of noise, so that ∃ σ > 0, s.t.

∀σ ∈ (0,σ), BNE(M2(σ)) = {s∗}.

Proof. Application of the theorem page 996, Carlsson and van Damme (1993).¥

Lemma 1. There exists a unique ex ∈ [X,X] solving ∆πi(n, ex) = 0.
Therefore ∆πi(n, x) < 0 ∀x < ex and ∆πi(n, x) > 0 ∀x > ex ∀i ∀n.
Proof . Since ∆πi(·, x) is continuous and monotonic (assumption A2 (C) and

A3(M)), ∃! ex s.t. ∆πi(n, ex) = 0 and ∆πi(n, x) < 0 for all x < ex and ∆πi(n, x) >

0 for all x > ex. By assumption A4 we know that ex ∈ [X,X] for n = 0 and for

n = N − 1.Therefore by strategic substitutes (A1), ex ∈ [X,X] ∀n.¥

Lemma 2. ∃ σ0 > 0 s.t.∀σ ∈ (0, σ0), ∀j, i if j > i and xj − xi < σ,

then ∆πi(n, xi)−∆πj(n, xj) > 0 ∀n.

Proof . From assumption A5 (PO) we know that there exists a players or-

der {1, ..., N} such that ∃ α > 0 s.t if j > i then ∆πi(n, x) − ∆πj(n, x) >

α ∀i, j ∀n. Hence using assumption A3 (M) we know that ∀j 6= i if xi < xj ∃ σ0ji > 0
s.t. ∆πi(n, xi)−∆πj(n, xi+σ

0
ji) = 0 ∀n. Let σ0 ≡ min{σ0ji}j 6=i therefore ∀σ ∈ (0, σ0)

if j > i and xj − xi < σ then ∆πi(n, xi)−∆πj(n, xj) > 0 ∀n.¥

Lemma 3 St ⊇ BNE(GN(σ)) ∀t.
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Proof . By contradiction let us suppose that St ⊂ BNE(GN(σ)) for some t.

Then there exists a profile s ∈ BNE(GN(σ)) and s /∈ St for some t.

Since s ∈ BNE(GN(σ)) implies

Πi(si(xi), s−i, xi) ≥ Πi(s
0
i(xi), s−i, xi) ∀xi ∀s0i ∈ Si and ∀i

but s /∈ St(xt) then ∃ s
0
i ∈ St−1

i s.t. Π(s
0
i(xi), s−i, xi) > Π(si(xi), s−i, xi) for

some xi and for some s−i ∈ eSt−1
−i . Therefore s is not a Bayesian Nash equilibrium

profile. Hence it must be the case that St ⊇ BNE(GN(σ)) ∀t.¥

In order to develop proofs for lemmas 4 and 5 we first need to introduce the notion

of reduced game and extremal profiles. We also state some of their properties.

Definition 1. Reduced Game: Consider a game GN(σ) as defined in section 3,

and an arbitrary subset of players I. Let sI = (si)i∈I and s−I = (si)i/∈I . Conditionally

on s−I , we define GI(σ, s−I) as a reduced game (with I players) of the original game

GN(σ). It is easy to check that if GN(σ) satisfies assumptions A1 A2, A3, A5, the

same assumptions hold for the reduced gameGI(σ, s−I). Additionally, if conditionally

on s−I there exists an interval of signal [λ, λ] ⊆ [X,X] such that for every player i

∈ I, there exist upper and lower dominance regions (according to assumption A4),

then GI(σ, s−I) is a reduced game that holds the same properties of the original game

GN(σ). These fact may allow us to use results from games with less players.

Definition 2. Extremal Profiles: Let st−1−i , s
t−1
−i be the extremal profiles for some

player i. These two particular profiles are defined as follows:

st−1−i = argmax
s−i∈St−1−i

∆Πi(s−i, xi)

st−1−i = argmin
s−i∈St−1−i

∆Πi(s−i, xi)

In words,8 by strategic substitutes (A1 (SS)) if player i, upon receiving a signal

8Notice that by strategic substitutes (assumption A1), that both st−1−i and st−1−i are determined
independently of the value of xi.
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xi and assuming that his opponents are using the strategy profile st−1−i (s
t−1
−i ), chooses

action 0 (1) he will choose action 0 (1) for all s−i ∈ St−1
−i .

Analogously define s0t−1−i , s0t−1−i as the extremal profiles restricted to eSt−1
−i , where

recall eSt−1
−i is defined by equation 2. More formally:

s0t−1−i ∈ argmax
s−i∈eSt−1−i

∆Πi(s−i, xi)

s0t−1−i ∈ argmin
s−i∈eSt−1−i

∆Πi(s−i, xi)

Therefore, since by definition St−1
−i ⊇ eSt−1

−i , by strategic substitutes the following

inequalities holds for all s−i ∈ eSt
−i :

∆Πi(s
t−1
−i , xi) ≥ ∆Πi(s

0t−1
−i , xi) ≥ ∆Πi(s−i, xi) and

∆Πi(s−i, xi) ≥ ∆Πi(s
0t−1
−i , xi) ≥ ∆Πi(s

t−1
−i , xi).

Lemma 4. Consider a game GN(σ) satisfying assumptions (A1) to (A5). Suppose

∃ t such that St
N = {s∗N}, then St = {s∗} and s∗ ∈ BNE(GN(σ)).

Proof. If player N plays the strategy sN(·; kN), i.e.

sN(xN ; kN) =

 1 if xN > kN

0 if xN < kN

Then the subset of players {1...N − 1} face a reduced game GN−1(σ, s∗N). For the

subset of signal [X − σ, kN − σ] it is also easy to check that GN−1(σ, s∗N) satisfies

assumption A1 to A5. From Lemma 5.A (stated at the end of this appendix), or ap-
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plying the Carlsson and van Damme result,9 we know that any game G2(σ) satisfying

assumptions A1 to A5 has the equilibrium structure according to equation 1. Then by

induction we can assume that GN−1(σ, s∗N) has a unique equilibrium also according

equation 1. Therefore St = {s∗}.
Using the same argument, but starting from the right hand side, it easy to check

that the unique best response for player N to the profile s∗−N is to play s
∗
N .¥

We prove next lemma 5. We will develop the proof using an induction argument in

the number of players, then in order to ease the exposition we first present a version

of lemma 5 but for the two player case. We call this previous lemma, lemma 5.A.

Lemma 5.A. Consider a game G2(σ) satisfying assumptions A1 to A5. Then

∃ σ > 0 s.t. ∀σ ∈ (0,σ) the conditionally undominated sequence {St}∞t=0 satisfies:
i) ∀t ∀i
St
1 = {s1 : s1(x1) = 0 if x1 < x1 < k1 and si(xi) = 1 if xi ∈ (k1, xt1) ∪ (k1,X)}

St
2 = {s2 : s2(x2) = 0 if x2 < xt2 and si(xi) = 1 if x2 > k2}
and if then xt2 > xt1.

ii) ∃ t0 s.t. ∀ t ≥ t
0
, xt2 = k2

Proof. Part i). First let us define σ ≡ min©(k2 − k1), (k2 − k1), σ0
ª
, where σ0 is

defined according to Lemma 3. Now, from A1 (SS) if s1 is a best response (BR) to

a switching strategy s2(·; k2), it will be a BR to any s2 ∈ S02 , then it is easy to check

that

∆Π1(s2(x2; k2), x1 = k2 − σ) = ∆π1(0, k2 − σ) > 0

∆Π1(s2(x2; k2), x1 = k2 + σ) = ∆π1(1, k2 + σ) < 0

9See theorem page 996, Carlsson and van Damme (1993)
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So, given continuity of the payoff function we can use the intermediate value

theorem: ∃ x11 > k1, where x
1
1 = min {x1 : ∆Π1(s2(·; k2), x1) = 0} and10

S11 =
©
s1 ∈ S01 : s1(x1) = 0 if x1 < k1 and s1(x1) = 1 if x1 ∈ (k1, x11) ∪ (k1,∞)

ª
Now, player 2’s first round of elimination proceeds as follows: by A1 (SS), if

s2 ∈ S12 is a BR to s−1 (·;x11), where s−i (·;xi) to denote the “inverse” switching
strategy, which switches from 1 to 0 at xi, it will be a BR to any s1 ∈ S11 . Then the

net payoff of player 2 observing a signal x2 = k2 and facing a strategy s
−
1 (·;x11) is

∆Π2(s
−
1 (·;x11), x2 = k2) = ∆π2(1, k2)Fσ(x

1
1 | k2) +∆π2(0, k2)(1− Fσ(x

1
1 | k2))

From A4 (IS) ∆π2(0, k2) = 0 and from A1 (SS) ∆π2(1, k2) < 0. Since 0 < Fσ(x
1
1 |

k2) < 1, therefore ∆Π2(s
−
1 (·;x11), k2) < 0.

Now, by A1 (SS) ∆Π2(s
−
1 (·;x11), x2 = x11 + σ) = ∆π2(0, x2) > 0. Again, given

continuity of the payoff function we can use the intermediate value theorem: ∃ x12

> k2, where x
1
2 = min

©
x2 : ∆Π2(s

−
1 (·;x11), x2) = 0

ª
, and

S12 ≡
©
s2 ∈ S02 : s2(x2) = 0 if x2 < x12 and s2(x2) = 1 if x2 > k2

ª
Repeating this process of iteration it is easy to prove by induction that a strategy

profile s surviving t rounds of elimination is contained in the set St such that:

St
1 : {s1 : s1(x1) = 0 if x1 < k1 and s1(x1) = 1 if x1 ∈ (k1, xt1) ∪ (k1, X)}

St
2 : {s2 : s2(x2) = 0 if x2 < xt2 and s2(x2) = 1 if x2 > k2}

10Notice that by construction 0 < k2 − x11 < σ
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and xt1, x
t
2 are obtained recursively from the following equations

xt1 = min
©
x1 : ∆Π1(s2(·;xt−12 ), x1) = 0

ª
(4)

xt2 = min
©
x2 : ∆Π2(s

−
1 (·;xt1), x2) = 0

ª
(5)

Finally, notice that the process governed by equations 4 and 5 defines two strictly

increasing sequences {xt1}, {xt2} where xt2 > xt1 ∀t.
Part ii). Now, let us suppose now that there exist the limit point x∞1 and by

construction there also exists x∞2 where 0 ≤ x∞2 − x∞1 < σ. Rewriting the conditions

of equations 4 and 5 and using the equivalence Fσ(x
∞
1 | x∞2 ) = 1 − Fσ(x

∞
1 | x∞2 ) we

get

∆π1(1, x
∞
1 )Fσ(x

∞
1 | x∞2 ) +∆π1(0, x

∞
1 )(1− Fσ(x

∞
1 | x∞2 )) = 0

∆π2(1, x
∞
2 )Fσ(x

∞
1 | x∞2 ) +∆π2(0, x

∞
2 )(1− Fσ(x

∞
1 | x∞2 )) = 0 (6)

It must be also true that the difference between these two equations is zero as

well, so

(∆π1(1, x
∞
1 )−∆π2(1, x

∞
2 ))Fσ(x

∞
1 | x∞2 ) + (7)

(∆π1(0, x
∞
1 )−∆π2(0, x

∞
2 ))(1− Fσ(x

∞
1 | x∞2 )) = 0

but from lemma 3 and since 0 < Fσ(x
∞
1 | x∞2 ) < 1 we know that each term

in equation 7 is strictly positive, then ∆Π1(s2(·;x∞2 ), x∞1 ) −∆Π2(s
−
1 (·;x1), x∞2 ) > 0.

Contradiction. Hence, since {xt1} is an increasing unbounded sequence it must be the
case that ∃ t∗ s.t. ∀t > t∗ xt1 ≥ k1. i.e. in a finite number of steps the sequence

reaches the upper dominance region eliminating all strategies but one: s1(·; k1). On
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the other hand xt
∗
2 < k2 which implies that ∆Π2(s1(·; k1), xt∗2 ) = ∆π2(1, x

t∗
2 ) <

0, therefore xt
∗+1
2 = k2 is the last expected payoff where he is indifferent between

the two actions: ∆Π(s1(·; k1), k2) = ∆π2(1, k2) = 0. Finally set t0 = t∗+1 then ∀ t ≥
t
0
, xt2 = k2.¥

Lemma 5. Consider a game GN(σ) satisfying assumptions (A1) to (A5). Then

∃ σ > 0 s.t. ∀σ ∈ (0, σ) the conditionally undominated sequence {St}∞t=0 satisfies:
i) ∀t ∀i
St
i = {si : si(xi) = 0 if xi < min{xti, x∗i } and si(xi) = 1 if xi ∈ (x∗i , xti) ∪

(kN , X + σ)}
and if i > j then xti > xtj.

ii) ∃ t0 s.t. ∀ t ≥ t
0
, xtN = kN

Proof. First define σ = min
©
(ki − ki−1)

N
i=2, (ki − ki−1)Ni=2, σ0

ª
, where σ0 is cal-

culated according to Lemma 2. Second, since we need to prove that both parts of

the lemma are true for all i and for all t, let us introduce an induction argument in

the number of players. Lemma 5.A shows that Lemma 5 is true for games with two

players G2(σ) satisfying assumptions A1 to A5. Therefore let us assume that lemma

5 remain valid for games with N − 1 players satisfying assumptions A1 to A5.
Now, having assumed the inductive process in the number of players, we will prove

the first part of Lemma 5 through induction in t and we will prove the second part

showing that GN(σ) is “composed” of two reduced games.

Proof of part i). First consider the first round of conditional elimination, t =

1. By definition of σ, we know that kN−1 < kN ,−σ then,11 ∀i = 1, ..N − 1 and
∀xi < kN − σ player i’s payoff is ∆Πi(s−{i,N}, sN = 0).Then, the subset of players

{1...N − 1} face a reduced game GN−1(σ, sN = 0). It is easy to check that for signals

11Recall that kN−1 > ... > k1
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in the subset [X−σ, kN −σ], the reduce game GN−1(σ, sN = 0) satisfies assumptions

A1 to A5. By the induction assumption we know that Lemma 5 holds for games with

N − 1 players, then for players 1 to N − 1 the first round of elimination coincide with
the one in the reduced game. More formally: for every player inGN−1(σ, sN = 0) there

exist bx1i and bSi, hence x1i = bx1i and S1i = bS1i . Now, since x1N−1 < kN − σ, then the

minimum signal for which player N is indifferent between the two actions is kN , i.e.

x1N = kN . Therefore the undominated set S
1
N contain all strategies that plays the

dominant action in the corresponding dominant region, i.e. S1N = {sN : sN(xN) =

0 if xN < x1N and 1 if xN > kN}.
Now, following the induction argument in t, we assume that lemma 5 is true for a

round t− 1. Let us divide the analysis in to possible cases:
a) if xt−1N−1 < x∗N−1

b) if xt−1N−1 ≥ x∗N−1

and let us show that the lemma is true in both cases.

a) First, without loss of generality let assume that some player l ∈ {1, ..., N−1} is
the “last” player to reach his threshold x∗l . Therefore the induction assumption can

be states as follows:

∀i = 1, ..., l
St−1
i = {si : si(xi) = 0 if xi < x∗i and 1 if xi ∈ (x∗i , xt−1i ) ∪ (ki,X)}
∀i = (l + 1), ..., N
St−1
i = {si : si(xi) = 0 if xi < xt−1i and 1 if xi > ki},
and if i > j then xt−1i > xt−1j

Now it is enough to prove that St has the same structure as St−1, i.e players

i = (l + 1), ..., N − 1 will increment the set of signals where they pick action 0 and
players i = 1, ..., l will increment the set of signals where they pick action 1.

By strategic substitutes, for all i = (l+1), ..., N−1 the component of the extreme
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profile st−1−i , associated with the N th player is sN(·; kN). Then if player i, upon

receiving a signal xi and assuming that his opponents are using the strategy profile

st−1−i , chooses action 0 he will choose action 0 for all s−i ∈ eSt−1
−i .

Recall that if players i = 1, ..., l choose action 1 when other players’ strategy is

s0t−1−i , they will pick action 1 for all s−1 ∈ eSt
−i. We now prove that ∀i ∈ {1, ..., l}

and ∀xi < x∗N−1, the component, of the extreme profile s0t−1−i , associated with the

N th player is sN(·; kN) as well. Suppose by way of contradiction that the strategy
is different from SN(·; kN)) for some xi < x∗N−1. Then ∃ a neighborhood O ⊆ [xi −
σ, xi+σ] such that on O sN(xN) = 1. Since for signals less than x∗N−1 we cannot have

the N − 1 dimensional profile (1, ..., 1) on O. By anonymity permute player N with

some player j s0t−1j (xj) = 0, then by strategic substitutes this permuted strategies

lower payoff ∆Πi, and so s0t−1−i could not have been a minimizer of ∆Πi on eSt−1
−i .

Now, we conclude that, for all signal less than x∗N−1 the extremal profiles st−1−i ∀i ∈
{(l + 1), ..., N − 1}and s0t−1−i ∀i ∈ {1, ..., l} coincide at least in their last component;
both profiles consider player N playing the switching strategy sN(·; kN). Then the
subset of players {1..., N − 1} face a reduced game GN−1(σ, sN = 0). It is easy to

check that for the subset of signal [X − σ, x∗N−1], the reduced game GN−1(σ, sN = 0)

satisfies assumptions A1 to A5. By the induction assumption we know that Lemma

5 holds for games with N − 1 players, then for players 1 to N − 1 the round of
elimination t coincides with the same round of the reduced game. More formally: for

every player in GN−1(σ, sN = 0) there exist bxti and bSt
i , hence x

t
i = bxti and St

i = bSt
i , i.e.

St
i have the same structure than St−1

i for all i ∈ {1, ..., N − 1}.
By assumption A5 (Players Order) and using the intermediate value theorem it is

easy to check that there exists xtN > xtN−1 such that ∆ΠN(s
t−1
−N , x

t
N) = 0. Therefore

St
N = {sN : sN(xN) = 0 if xN < xtN and sN(xN) = 1 if xN > kN}

b) In this second case we assume that xt−1N−1 ≥ x∗N−1. We will follow the same
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argument described and used in the previous part. Now, since we are considering

signals such that xt−1N−1 ≥ x∗N−1 we know that players 1 to N − 1 have reached his

threshold . By strategic substitutes, for all i = i = 2, ..., N − 1 the component, of
the extreme profile st−1−i , associated with the first player is s1(·; k1). Then if player

i, upon receiving a signal xi and assuming that his opponents are using the strategy

profile st−1−i , chooses action 1 he will choose action 1 for all s−i ∈ eSt−1
−i .

On the hand we need to prove that player N will increment the set of signal where

he picks action 0, then if this player chooses action 0 when other players’ strategy is

s0t−1−N , they will pick action 0 for all s−1 ∈ eSt
−i.We now prove that the component, of

the extreme profile s0t−1−N , associated with the first player is s1(·; k1) as well. Suppose
by way of contradiction that the strategy is different from s1(·; k1) for some xi ≥
x∗N−1. Then ∃ a neighborhood O ⊆ [xi − σ, xi + σ] such that on O s1(x1) = 0. Since

for signals greater or equal than x∗N−1 we cannot have the N − 1 dimensional profile
(0, ..., 0) on O. By anonymity permute player 1 with some player j s0t−1j (xj) = 1, then

by strategic substitutes this permuted strategies higher payoff ∆Πi, and so s0t−1−i could

not have been a maximizer of ∆Πi on eSt−1
−i .

Now, we conclude that for all signal greater or equal than x∗N−1 the extremal

profiles st−1−i ∀i ∈ {2, ..., N − 1}and s0t−1−N coincide at least in their first component;

both profiles consider player 1 playing the switching strategy s1(·; k1). Then the subset
of players {2..., N} face a reduced game GN−1(σ, s1 = 0). It easy to check that for the

subset of signal [x∗N−1, X+σ, ] the reduced gameGN−1(σ, s1 = 0) satisfies assumptions

A1 to A5. By the induction assumption we know that Lemma 5 holds for games with

N − 1 players, then for players 2 to N the round of elimination t coincides with the

same round of the reduced game. More formally: for every player in GN−1(σ, s1 =

0) there exist bxti and bSt
i , hence x

t
i = bxti and St

i = bSt
i , i.e. S

t
i have the same structure

than St−1
i for all i ∈ {2, ..., N}.

By assumption A5 (Players Order) and using the intermediate value theorem it
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is easy to check that there exist xt1 < xt2 such that ∆ΠN(s
t−1
−1 , x

t
1) = 0. Therefore

St
1 = {s1 : s1(x1) = 0 if x1 < k1 and s1(x1) = 1 if x1 ∈ (k1, xt1) ∪ (k1,X + σ)}.

Proof of part ii) By the induction argument we know that in both reduced games,

GN−1(σ, sN = 0) and GN−1(σ, s1 = 0) described above, the higher player completes

the elimination of conditionally dominated strategies in a finite number of steps.

Since we treated game GN(σ) as it were “composed” of two reduced games, player

N in GN(σ) also completes the deletion process in a finite number of steps, i.e.

∃ t0 s.t. ∀ t ≥ t0, xtN = kN .¥
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