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Abstract

This paper proves an equilibrium selection result for a class of games with strategic substi-
tutes. Specifically, for a general class of binary action, N-player games, we prove that each
such game has a unique equilibrium strategy profile. Using a global game approach first
introduced by Carlsson and van Damme (1993), recent selection results apply to games with
strategic complementarities. The present paper uses the same approach but removes the
assumption of perfect symmetry in the dominance region of the players’ payoffs. Instead
we assume that players are ordered such that asymmetric dominance regions overlapped
sequentially. This allow us to extend selection results to a class of games with strategic
substitutes.
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1 Introduction

In general, game-theoretic models are developed under the assumption that the ra-
tional behavior of the players and the structure of the game are common knowledge.
Since these assumptions might be too stringent for modeling real-life players, it is
important to know whether the prediction of a game substantially changes in com-
parison to the predictions of a slightly altered version of the same game!. If indeed it
turns out that only certain of the game’s equilibria survive this “robustness check,”
then we may reasonably refine our prediction of what happens in such games.

This paper examines the dual issues of equilibrium selection and robustness in
a class of games with strategic substitutes. These are games in which each player’s
marginal payoff from increasing his own action is decreasing in the other players’
actions. The standard example is the game of voluntary contribution toward a public
good. The equilibria exhibit a classical free rider problem: an individual is less willing
to contribute the larger is the total contribution of others. If one’s contribution is
an indivisible choice such as a unit of time or effort, then voluntary contribution
games typically exhibit multiple Nash equilibria, each corresponding to a distinct
configuration of contributors and non-contributors.

To examine equilibrium selection in games such as these, we follow the Global
Games approach pioneered by Carlsson and van Damme (1993).2 The idea in this
approach is to examine Nash equilibria as a limit of equilibria of payoff-perturbed
games. More formally, suppose G is a standard game of complete information where
the payoffs depend on a parameter z € IR, and also suppose that for some subset of the
parameter x, G has a strict Nash equilibrium. Rather than observing the parameter

x, suppose instead that each player observes a private signal x; = = + og; where

I Examples in this direction are the seminal contributions of Harsanyi’s games with randomly dis-
turbed payoffs (Harsanyi (1973)), and Selten’ concept of trembling hand perfection (Selten (1975)).
2For an excellent description and survey of the ensuing literature see Morris and Shin (2000).



o > 0 is a scale factor and ¢; is a random variable with density ¢. Denote this
“perturbed game” by G(c¢), and let NE(G) and BN E(G(0)) denote the sets of Nash
and Bayesian Nash equilibria of the unperturbed and perturbed games, respectively.
Equilibrium selection is obtained when lim,_oBNE(G(0)) is a subset of NE(G).

Carlsson and van Damme (1993) show, in fact, that for two-player, two-action
games, this limit comprises a single equilibrium profile. Moreover, this equilibrium
profile is obtained through iterated deletion of strictly dominated strategies. Roughly,
the deletion requires that, for each player and for each action of that player, there are
certain extreme values of the parameter, x, for which that action is strictly dominant.
Even if these values carry very little probability weight, the players can use signals
close to these “dominance regions” to rule out certain types of behavior of others.
Hence, the iterative deletion proceeds.

Recently, these results have been extended by Frankel, Morris and Pauzner (2002)
for games with many players and many actions. However, existing results in this
literature are tipically limited to the case of strategic complementarities (and some
other technical assumptions). This strong result is very useful for many games such
as bank run models (Goldstein and Pauzner (2000)), currency crises games (Morris
and Shin (1998)), etc.

Yet, there is a wide class of games where this condition is not satisfied. The
voluntary provision example mentioned above is but one example. Of course in the
two player case, the game can be represented as a game of strategic complements by
just reordering the set of actions. However, in games with more than two players ,
the analysis has not been extended to games of strategic substitutes.

The key insight in the present paper is to show how global games ideas can apply
to certain games of strategic substitutes when the players’ payofts display a certain,
commonly known asymmetry. Specifically for a class of binary actions games, we

assume that there exists an ordering of players such that each player’s dominance



region is an arbitrary displacement to the right of the “previous” player’s dominance
region, i.e. the values of x at which some player’s upper dominance region begins
and at which his lower dominance region finishes are strictly higher (lower) compared
to those of any lower (higher) player. Under these assumptions and some other
technical properties, the main result of the paper proves that there exists a unique
equilibrium profile. Specifically, we show that as the noise goes to zero, a process of
iterated elimination of conditionally dominated strategies converges to a single profile
of switching strategies. In such a profile, each player has a threshold, cutoff signal
above which he takes the higher (contributing) action, and below which the lower
(non-contributing) action is taken. A very important characteristic of this profile is
that each player has a different cutoff point. Interestingly, the order of these cutoft
points is the same order that the players have. That is, the lower the player in
the ordering, the smaller is his threshold. More precisely, the equilibrium predicts
that the first player switches at the end of his lower dominance region, the last player
switches at the beginning of his upper dominance region and all the other players have
switching points in between these two. Intuitively, the equilibrium selected establishes
that, if there are certain number of players choosing the contributing action, it must
be the case that they are the lowest according to the players’ order, conditional on
the value of the parameter. Therefore, depending on the specific payoff structure of
the game, the equilibrium profile structure might play an interesting role from an
efficiency point of view. The result suggests that common knowledge of the order of
players and global games structure are sufficient conditions to select not only a unique
but also an ordered equilibrium.

As an introductory example, in Section 2, we present a game of public good
provision, where all the assumptions are satisfied. The main result for this game
is that for general distributional properties of the signal noise, there exists a unique

strategy profile played in equilibrium. This profile induces an efficient provision of the
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public good, and the contributions come from the lowest cost contributors. This result
suggests that inefficient contribution equilibria survive only under a pair of stringent
assumptions: common knowledge of the fundamentals, and perfect symmetry in the
players’ characteristics. In section 3 we present this general framework and establish
our main result. In sections 4 we develop the main steps of the proof and finally, in
section 5 we presents the conclusions. Proofs of propositions and lemmas are relegated

to the appendix.

2 Example: Public Good Provision

In many collective action problems multiple Nash equilibria may exist, each corre-
sponding to a different configuration of contributors. Many of these equilibria are
inefficient since individuals with a higher marginal cost of contributing end up con-
tributing disproportionately. Here, we prove a result that suggests that these ineffi-
cient Nash equilibria are not robust.

We develop a binary action game of incomplete information in which the mecha-
nism for public good provision utilizes both government and voluntary contributions.
In particular, to fund a public good, a government pledges “seed money” which must
be augmented by funds from private contributors. Each contributor, upon receiving
a private signal of the amount of this pledge, then chooses whether to contribute.

Agents have costs of contributing.

2.1 The Game

Consider the following N person game My. A government (or a social planner) de-
cides to provide a public good G, requiring society’s contribution. The society is
composed by N different individuals indexed by i = 1,2..., N. Each agent has to

decide whether to contribute, choosing an indivisible action a; from the binary set



A; = {1 = contribute, 0 = not contribute} .

Let G(x,n) denote the public good technology, where x € [& , 7} is the gov-
ernment contribution and n is the number of people who decide to contribute (not
considering the player 7). Without loss of generality we can characterize the payoffs
as follows: if the agent i chooses to contribute, he has to provide an effort (contribu-
tion) ¢; > 0, and receives a utility G(xz,n + 1) — ¢;. On the other hand, if the same
agent chooses not to contribute (free ride), he will receive a utility G(z,n). Let be
AG(z,n) = G(z,n+1)—c¢;—G(x,n) the player i'net payoff from contributing. Finally,

the assumptions about the mechanism are the following;:

(a.1) Strategic Substitutes. The greater the number of people contributing
the smaller is player ¢’s incentive to contribute.

AG(z,n) < AG(z,n —1)

Where G(xz,n =0) > 0.

(a.2) Continuity and Differentiability

Vn G(z,n) is a continuous and differentiable function of .

(a.3) Monotonicity

AG(x,n) is an increasing function of z. i.e. %&f’") >0 Voe [X,X].

(a.4) Dominance Regions. Conditional on the value of the government con-
tribution: 3 k; < X solving AG(z, N — 1) = 0, i.e. Yo > k; action 1 is a strictly
dominant strategy, and 3 k;, > X solving AG(z,0) = 0, i.e. Vo < k; action 0 is a

strictly dominant strategy.

Assumption (a.1) states the condition in the payoff structure such that this game
is a game of strategic substitutes. In general, the greater the other players’ strategy
profile, the smaller is player i’s incentive to increase his strategy. Assumption (a.2)
establishes a continuity and differentiability condition in the government contribu-

tion variable (the exogenous parameter), while (a.3) establishes that the higher the
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government’s contribution, the greater the player’s incentive to contribute. Finally,
assumption (a.4) requires that for a sufficiently high (low ) values of the govern-
ment contribution, player ¢ will always (never) contribute, i.e. (not) contributing is a

strictly dominant strategy.

2.2 Incomplete Information

Suppose now that the game is characterize by incomplete information in the payoff
structure. Instead of observing the actual value of the government contribution zx,
each player just observes a private signal z;, which contains diffuse information about
x. The signal has the following structure: z; = x + o¢;, where o > 0 is a scale factor,
x is drawn from [K , 7} with uniform density and ¢; is an independent realization of
the density ¢ with support in [—%, %] We assume ¢; is i.i.d. across the individuals.

In this context of incomplete information, a Bayesian pure strategy for player
iis a function s; : [X — %0,7 + %a] — A;, and S; is the set that contain all such
strategies. A pure strategy profile is a vector s = (s1, S2....5n), where s; € S; for all ¢
and equivalently define s_; = (s1, S92, ..8i_1, Si+1, ---SN) € S_;.

Defining this game of incomplete information as My(c), let us define BN E(My (o))
as the set of Bayesian Nash equilibria of My(o). For simplicity we will restrict the
analysis to the two player case, but the extension to the many players case is a direct

application from of our main result.

2.3 Two Player Case

We can represent the two player case in the following normal form:



Player 2

ay =1 as =10
Player 1 | a; =1| G(x,2) —c1, G(x,2) —c2 | G(z,1) -1, G(z,1)
a; =0 | G(x,1), G(z,1) — 2 | G(x,0), G(z,0)

First suppose c¢; = c¢o, the symmetric case. Then both players have the same
payoff and dominance regions. In figure 1, we graphically describe the dominance
region structure of the game, where the cutoff points are the same (i.e. ki, =k, =k
and k; = ky = k). Thus, if 2 >k (z < k) both players are in the upper (lower)
dominance region.

In the case of complete information about z, the set of Nash equilibria has the

following structure:

e For values of x in the dominance regions, both players choose the dominant
action. In figure 1 the dashed lines denote the value of x for which player 1 is
choosing a dominant action, and solid lines denote when player 2 is choosing
dominant actions. Therefore in each dominance region there exists a unique
action profile in equilibrium: a = (a3 = 1,a3 = 1) in the upper region and

a = (a3 = 0,ay = 0) in the lower region.

e If x takes values in the interval (E, E) there are two pure strategy Nash equilibria,
where one player chooses to contribute and the other chooses not to contribute.
The feasible profiles played in equilibrium are either a = (a; = 1,a; = 0) or

a=(a;=0,a0 =1)

This Nash equilibria structure suggests two important observations. First, the

Carlsson and van Damme equilibrium selection result can not be applied to this game
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Figure 1: Symmetric Case

because it requires that a selected equilibrium be a unique Nash equilibrium for some
subset of values of the exogenous parameter (z in this case). In this game, neither
the strategy profile a = (0,1) nor a = (1,0) is a unique Nash equilibrium for some
value of z. Second, for = € (E, E) this symmetric case not only implies multiplicity,
but also that each of the equilibria has an asymmetric structure where just one of
the players contributes. This suggests that it is likely that asymmetry will play an
important role in any equilibrium selection attempt.

Let us introduce asymmetry in the payoff structure of the game. Suppose now
that co > ¢, and without loss of generality let us assume ¢; = ¢ and ¢; = (1 + §)c
where o > 0.

In figure 2 we can observe that the asymmetry generates the overlapping of the
dominance regions. A very important consequence of this fact is the generation of
a subset of values of x, (k;, ky) U (k1, k2), where the profile a = (1,0)is the unique
equilibrium. This enable us to apply the Carlsson and van Damme result.

Define s* as a particular profile of switching strategies, such that player 1 and

player 2 switches from action 0 to action 1 at the cutoff points k; and ky respectively.
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Figure 2: Asymmetric Case
We can summarize the result in the following proposition:

Proposition. Consider a game Ms(o) satisfying assumptions (al) to (a4).
There exists a unique strategy profile s* that survives iterated deletion of the strictly

dominated strategies for a sufficient small amount of noise, so that 3 @ > 0, s.t.

Vo € (0,6), BNE(My(0)) = {s*}.

Figure 3 shows the structure of the equilibrium profile s*: player 1 switches from
not contributing to contributing at k,; and player 2 switches at k,. It is important to
notice that this strategy profile induces an efficient provision of the public good, and
that the contributions come from the lowest cost contributors. The result suggests
that inefficient contribution equilibria survive only under a pair of stringent assump-
tions: common knowledge of the fundamentals, and perfect symmetry in the players’
characteristics.

Since the existence of overlapped dominance regions allowed us to select a partic-
ular equilibrium, it suggests that generalizing this payoft structure, under the global

games approach, we can prove the existence of a unique equilibrium in a more general
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Player 1 = = = Player 2

Figure 3: Equilibrium Selection: Two Players Case

class of games with strategic substitutes.
The next sections develop a more general framework, states and prove our main
result: the existence of a unique equilibrium profile in certain class of global games

with strategic substitutes.

3 General Framework

Consider the following general setup for an N person game G . There are N anony-
mous players indexed by i and each player has a binary set of actions A; = {0,1}.3
Player i’ payoff function is m;(a;, n, z) where a; € A;, n € {0, ..., N — 1} is the number
of players (other than i) that are choosing action 1 and z is an exogenous variable
which takes values in the interval [X, X] C RR.

Finally let us define Am;(n,x) = m;(1,n,2) — m;(0,n, x) as agent i’s payoff differ-
ence when he is choosing action 1 rather than action 0. We consider the following

assumptions for the payoff structure:

3We will also refer to a; = 0 as the “lower” action and a; = 1 as the “higher” action.
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(A1). Strategic Substitutes (SS). Conditional on the value of x,the greater
the other players’ strategy profile, the smaller is player i’s incentive to choose the
higher action:

Ifn>n" Ami(n,z) < Ami(n',z) V.

(A2). Continuity (C)

m;(a;,n,x) is a continuous function of .

(A3). Monotonicity (M). The greater the value of the exogenous variable z,
the greater the player ¢’s incentive to choose the higher action:

Je>0s.t ifr, 2’ €[X,X]and x > 2/, then

Ari(n,x) — Ami(n, o) > c(z — 2") Vn.

(A4). Upper and Lower Indifference Signals (IS). If other players are
choosing identical actions, there exists a unique value of x such that player i is
indifferent between the two actions:

Vidk; > X st Am(0,k) =0and 3k s.t. X > k; > k; s.t. Amy(N—1,k;) = 0.

(A5). Player Order (PO) Player j will be “greater” than player 4, if for both
players observing the same value of x and facing the same strategy profile, player j
has less incentive to pick the higher action (i.e. gets a lower net payoff):

There exists a players order {1,..., N} such that 3 « > 0 s.t if j > ¢ then
Ami(n,z) — Amj(n,z) > a Vi, j Vn.

An important remark is that assumptions Al (SS), A3 (M) and A4 (IS) provide
sufficient conditions for the existence of dominance regions, along which each action
is strictly dominant. This fact provides this setup with the necessary global game
structure, i.e. Vo <k, Ami(n,z)<0andVz >k; Ami(n,z)>0Vn.

Additionally, these assumptions allow us to state a more general single crossing

property, which will help to characterize the equilibrium profile:

Lemma 1. There ezists a unique T € [X, X] solving Am;(n,z) = 0.
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Figure 4: Player i’s payoffs dependence on x

Therefore Am;(n,x) <0Vx <z and Ami(n,z) >0Vx > Vi Vn.

In figure 4, we can observe how player i’s payoffs depend on z. From lemma 1 we
know that for all n there exists a unique z such that player 7 is indifferent between
the two actions, i.e. given n, player i’s best response is to switch from the lower action
to the higher action at a unique value of the signal. Given assumption A3 (M) we
can also conclude that the net payoff function is monotonic in  and by assumption
A1 (SS) we know that for different n the net payoff functions do not intersect each
other.

Assumption A5 (PO) directly implies that if j > 4 then k; > k; and ki > kit
In figure 5, for a three player case, we can observe a direct consequence of this
assumption: sequentially overlapped dominance regions. Therefore assumption A5
(PO) provides the necessary asymmetry in the game.

The last important remark about the assumptions is contained in the following

lemma:

Lemma 2. 3 09 > 0 s.tVo € (0,00), Vj,i if j > i and x; —z; < 0,
then Am;(n,x;) — Amj(n,x;) > 0 Vn.

4Without loss of generality in the analysis we will assume the case where ky < k1, excluding the
trivial situations where ky > ki, i.e. player N’s lower dominance region does not overlap player
1’s upper dominance region.
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Figure 5: Overlapped Dominace Regions: Three Players Case

From assumption A5 (PO), we know that if two players face the same strategy
profile and the same value of x, the “greater” player will get a lower net payoff. This
lemma states that this is still true even when they face different values of x, such that

their difference is less than oy.

3.1 Incomplete Information

Suppose now that the game is one of incomplete information in the payoff structure.
Instead of observing the actual value of z, each player just observes a private signal
x;, which contains diffuse information about z. We assume that this is a game of
private values, where each player gets utility directly from the signal rather than the
actual value of the variable.’

The signal has the following structure: z; = = + o¢;, where 0 > 0 is a scale

factor, o is drawn from the interval [X, X] with uniform density, and ¢; is a random

SEven though we have not proven that our main result is robust to this assumption, it is simple
to model the private value case as a limit of the common values case (when players derive utility
from the actual value of the variable) as the noise goes to zero (¢ — 0). This approach has been
used in the global game literature. (Carlsson and van Damme (1993), Morris and Shin (2000) and
Frankel, Morris and Pauzner (2002).)
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variable distributed according to a continuous density ¢ with support in the interval
[—3, 3].We assume ¢; is i.i.d. across the individuals.

This general noise structure has been used in the global game literature, allowing
the conditional distribution of the opponents signal to be modelled in a simple way,
i.e. given a player’s own signal, the conditional distribution of an opponent’s signal z;
admits a continuous density f, and a cdf F, with support in the interval [z;—o, z;+0].
Moreover this literature establishes a significant result: when the prior is uniform,
players’ posterior beliefs about the difference between their own observation and other
players’ observations are the same,® i.e. F,(z; | z;) =1 — F,(z; | z;).

In this context of incomplete information, a Bayesian pure strategy for a player i is
a function s; : [X — %O’, X + %a] — A;,i.e. conditional on receiving a signal x; player
i takes an action s;(x;) = a; € {0,1}. A pure strategy profile is denoted as s =
(s1,82,...55) where s; € S; and equivalently we define s_; = (s1, 82, ..Si—1, Si41, ...Sn) €
S

A switching strategy is a Bayesian pure strategy s; satisfying : 3 k; s.t.

S; (ZEZ) =

Abusing notation, we write s;(+; k;) to denote the switching strategy with switching
threshold k;.

In this context of incomplete information, player i’s payoff is characterized by
his beliefs about his opponents strategies. In general, if player 7 is observing a signal
x; and is facing a strategy s_; his expected net gain of choosing action 1 instead of

action 0 can be written as

6This property holds approximately when z is not distributed with uniform density but o is
small, i.e. F(z; | zj) = 1— F(x; | ;) as ogoes to zero. See details in Lemma 4.1 Carlsson and van
Damme (1993).
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AHZ'<S_Z‘,I1'> = / Aﬂ'i(S_Z‘(I_i),ZL’i)dFU(_i) (ZE_Z' | IZ)

Calling this game of incomplete information Gy (o), let us define BNE(Gx(0)) as
the set of Bayesian Nash equilibria of Gy (¢). The main result of the paper will prove
that Gy (o) has a unique profile played in equilibrium as o goes to 0. In this profile,
every player will play a switching strategy s;(-;x}) where the threshold x} solve the
following equation:

Ami(i—1,27) =0 (1)

7

This states that, player ¢ will switch from 0 to 1 at =}, where =} is the indifference
point, when he faces a strategy profile such that all the players “lower” than him play
action 1 and all the “higher” players play action 0. From lemma 2 we know that for
all 7, 7 not only exists, but it is also unique.

Let s* be the profile such that each player is using a switching strategy s;(-; x}).

The main result of the paper is the following theorem:

Theorem. Consider a game Gy(0) satisfying assumptions (A1) to (A5), then
15 >0 s.t. Yo € (0,0), BNE(Gn(0)) = {s*}.

This proposition allows us to analyze a wide class of games of strategic substitutes
where multiplicity is a problem, extending the global game literature. In particular
this proposition generalizes the analysis and conclusion developed in the public good
example of section 2; now, lower cost players are represented by a “higher” position
in the players order (according to A5 (PO)), and they will switch between the actions
at a higher threshold.

As an example, in figure 6 we show a three players case. The strategy profile in

equilibrium shows the higher player switching at the beginning of his upper dominance
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Figure 6: Equilibrium Selection: Three Players Case

region, % = k3. The lower player switches at the end of his lower dominance region

xt = k,, and player 2 switches at a} where k;, < 3 < ks.

4 Proof of the Theorem

In this section we develop the main steps of the proof of the theorem. We will argue
that the profile s* is the unique profile surviving a particular process of iterated dele-
tion of strictly dominates strategies. We start defining the sequence of undominated
sets. Note however, that these are not the standard undominated sets used to define
iteratively undominated strategies. Instead these are sets defined by an alternative
process that eliminates profiles that are not part of any equilibrium. These strategies
are strictly dominated when we restrict ourselves to considering some subset of others
players’ actions that are “potentially” part of some Nash equilibrium profile. We call
these sets the conditionally iteratively undominated sets.”

We will prove that this process does not rule out any Bayesian Nash equilibria.

"Since the elimination proceeds upon players receiving the signal, then formally these sets contain
strategies that are interim strictly undominated.
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We then proceed to show that, under our mentioned assumptions the strategy profile
surviving the iterated deletion is unique. Hence only one equilibrium survives. We
now describe the structure of the conditionally undominated sets in Gy (o) satisfying

assumption Al to A5, and then proceed to give a formal proof of the theorem.

4.1 The Conditionally Undominated Profiles

For a given game Gy(0), let us define the process of deletion such that any strategy
profile that survives ¢ rounds of iterated elimination of conditionally strictly domi-
nated strategies is contained in S?, where S* = ‘J>\<IISf Vt (and S*; = xS} Vt Vi),
If player ¢’ best response correspondence is deﬁZI;ed as BR;(s_) :#{Zs,- S
IL;(si, 54, 25) > Mi(s;,5_4,2;) Va; Vs; € S;}, then the conditionally undominated

sequence {S5'}22, is defined as follows:

Set S0 = S; and S° = S_;, then Vt > 0

St,={5,¢e8",:35, €S s.t.5;= BR;(5_;) Vj #1} (2)

and

s; € STt fs; € SIT such that
St = (s, 54, m5) > Hi(ss, 5_4, 23) Va; Vs_; € §t:il (3)

and with strict inequality for some x;

This states that, §:-1 is the set of all others players’ strategy profiles that, for
some strategy s; € S;™ ', contains strategies that are mutually best responses (exclud-
ing player 7). Recall from section 3.1, that II;(a;, s_;, z;) represents player i’s expected

payoft when, upon observing a signal x; and facing a strategy s_;, he chooses action
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a;. Therefore in each round, all the strategies that are strictly dominated when oppo-
nents actions are restricted to those that are “potentially” part of a Bayesian Nash
equilibrium profile, are eliminated.

The following lemma establishes an important characteristic: For a general game
Gn (o) the conditional iterative process of elimination of strategies described above,

does not rule out any Bayesian Nash equilibrium.
Lemma 3. S' D BNE(Gy(0)) Vt.

Additionally, the following lemma proves that if game a G (o) satisfies assump-
tions (A1) to (A5) and, if for some ¢, player N s set of undominated strategies con-
tains a unique strategy such that he switches from action 0 to action 1 at ky , then
there exist a unique undominated profile s* in S*. The profile s* is a Bayesian Nash
equilibrium such that each component is a switching strategy where the cutoff solves

equation 1. More formally:

Lemma 4. Consider a game G (o) satisfying assumptions (A1) to (A5). Suppose
3t such that S§ = {sy}, then S = {s*} and s* € BNE(Gy(0)).

4.2 Iterated Elimination of Conditionally Dominated Strategies and Proof

of the theorem.

Now we describe the structure of the undominated set S* for a game G (o) satisfying
assumption Al to A5. Let us first define the sequences {a!}°, Vi.

Set 2 = —oo, and for ¢t > 0 each element of the sequence is calculated as follows:

E = min {:L‘z : Aﬂi(s—ul"i) = O}

s,iESizl
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Every element of the sequence represent the minimum signal among which the
player is indifferent between the two actions, but now just considering all available
strategies of his opponent that belong to the set §:~1, i.e. considering just the strategy
profiles that, for some strategy s; € S; ', contains strategies that are mutually best
responses (excluding player 7). Since S*;' C St it is easy to see that {z!}2, is an
increasing sequence.

Now, keeping in mind that z} is the signal that solves equation 1 and describes
player ¢” switching point in the profile of switching strategies s*, the following lemma

characterize the structure of every set S!.

Lemma 5. Consider a game Gy(0) satisfying assumptions (A1) to (A5). Then

37 > 0s.t. Yo € (0,7) the conditionally undominated sequence {S*}2°, satisfies:
St ={s; : si(x;) = 04f x; < min{al, x}} and si(x;) = 1if x; € (af,28) U

and if i > j then zi > x’.

i) 3t st Vt >t zh =ky

The first part of this lemma describe the structure of every strategy surviving
iterated deletion of conditionally dominated strategies. It shows that, giving z!, every
strategy in S! plays action 0 for signals less than the minimum between z!, z¥, and
plays action 1 for a signals in his upper dominance region and for signal in the interval

(xF, xt). However notice that (zF,z!) = ¢ if 2! < 2¥. This lemma also establishes that

the greater the player (according to assumption A5) the greater the value of zt, i.e.
the sequences {x!}°, preserve players’ order.
The second part of the lemma state that player N’ sequence {z}?°,, reaches his

upper dominance region in a finite number of steps.

In figures 7 and 8 we illustrate the structure of the surviving strategies for the
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Player 1 - = = Player 2 eeeseens Player 3

Figure 7: Case zf < z3

three player case. Figure 7 shows the case when z, < 23 and figure 8 shows the case
when zb, > 3.
Having described and characterized the conditionally undominated sequence

{8t}22, for any game Gy (o), we next state the theorem again and develop the proof.

Theorem. Consider a game Gy(o) satisfying assumptions (A1) to (A5), then
15 >0 s.t. Yo € (0,5), BNE(Gy(0)) = {s*}.

Proof. From Lemma 6 it follows directly that 37 > 0 s.t. for all o € (0,5) and
Vit >t S, = {s%}. Therefore using Lemma 5 we can conclude that ¥V t > ' S =
{s*}. Finally from Lemma 4 we know that S* O BNE(Gx(c)) then BNE(Gy(0)) =
{s'}m

5 Conclusions

The global game approach is a proven method to incorporate more realistic assump-
tions in game-theoretic models. Assuming a very general payoff structure, the ap-

proach examines Nash equilibria as a limit of equilibria of payoff-perturbed games.
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Player 1 - = = Player 2 eeeseens Player 3

Figure 8: Case zf > a3

Carlsson and van Damme (1993) show that in binary action two-player games, there
exists a unique equilibrium profile surviving iterated deletion of strictly dominated
strategies. Recently this result has been generalized by Frankel, Morris and Pauzner
(2002) to many players and actions, but limiting the analysis to games with strategic
complementarities.

Continuing with this line of research, we extend the literature proving an equilib-
rium selection result for a class of global games with strategic substitutes. Assuming
a particular asymmetry in the players’ dominance regions, we prove that for a general
class of binary action, N-player games, each such game has a unique equilibrium strat-
egy profile. This result might allows us to analyze a wide class of games of strategic
substitutes such as collective action problems, entry-exit models in industrial orga-
nization etc. In particular we apply the result to a model of public good provision.
The interesting conclusion to this application is that the equilibrium profile induces
an efficient provision of the public good, and the contributions come from the lowest
cost contributors. In general the result provides a useful tool for applications.

Further research must be devoted to extend the result to games with more than

22



two actions and with common values, i.e. where players derive utility from the actual

value of the exogenous parameter rather than the signal.
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6 Appendix

To ease the exposition, we now repeat the formal statement of the proposition and

lemmas 1 to 5 before each of their proofs.

Proposition. Consider a game Ms(o) satisfying assumptions (al) to (a4).
There exists a unique strategy profile s* that survives iterated deletion of the strictly

dominated strategies for a sufficient small amount of noise, so that 37 > 0, s.t.

Vo € (0,5), BNE(M(0)) = {s*}.
Proof. Application of the theorem page 996, Carlsson and van Damme (1993).H

Lemma 1. There exists a unique T € [X, X] solving Am;(n,Z) = 0.

Therefore Am;(n,x) <0Vx <z and Ami(n,z) >0Vx >7T Vi Vn.

Proof . Since Am;(-,x) is continuous and monotonic (assumption A2 (C) and
A3(M)), A = s.t. Ami(n,2) =0 and Am;(n,z) <0 forall v <z and Ami(n,z) >
0 for all x > Z. By assumption A4 we know that 7 € [X, X] for n = 0 and for
n = N — 1.Therefore by strategic substitutes (A1), 7 € [X, X] ¥n.R

Lemma 2. 3 09 > 0 s.t¥Yo € (0,00), V5,0 if j > i and z; —z; < 0,
then Am;(n,x;) — Amj(n,z;) > 0 Vn.

Proof . From assumption A5 (PO) we know that there exists a players or-
der {1,..,N} such that 3 o > 0 st if j > 4 then Am(n,z) — Anmj(n,xz) >
a Vi, j Vn. Hence using assumption A3 (M) we know that Vj # i if z; < z; 3 0%, > 0
s.t. Ami(n, x;) — Amj(n, v;+0%;) = 0 Vn. Let 0o = min{o’; },4 therefore Vo € (0, 0¢)

if j > ¢ and z; — x; < o then Am;(n,z;) — Anj(n,z;) > 0Vn.H

Lemma 3 S* D BNE(Gn(0)) Vt.
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Proof . By contradiction let us suppose that S* C BNE(Gy(0)) for some t.

Then there exists a profile s € BNE(Gy(0)) and s ¢ S* for some ¢.

Since s € BNE(Gy(0)) implies

L (s5(), 5_, m5) > Wi(s;(23), 54, 75) Va3 Vs, € S; and Vi

but s ¢ S*(z') then 3 s; € St s.t. (s;(2;),5_5, 7)) > I(s4(x;), 5 4, 2;) for
some x; and for some s_; € §t:l-1. Therefore s is not a Bayesian Nash equilibrium

profile. Hence it must be the case that S* O BNE(Gy(0)) Vt.1

In order to develop proofs for lemmas 4 and 5 we first need to introduce the notion

of reduced game and extremal profiles. We also state some of their properties.

Definition 1. Reduced Game: Consider a game G (o) as defined in section 3,
and an arbitrary subset of players I. Let s; = (s;)ier and s_; = (s;);¢;. Conditionally
on s_y, we define G;(0,s_y) as a reduced game (with I players) of the original game
Gn(0o). It is easy to check that if Gy (o) satisfies assumptions A1 A2, A3, A5, the
same assumptions hold for the reduced game G (o, s_r). Additionally, if conditionally
on s_; there exists an interval of signal [\, \] C [X, X] such that for every player i
€ I, there exist upper and lower dominance regions (according to assumption A4),
then G(o, s_5) is a reduced game that holds the same properties of the original game

Gn(0). These fact may allow us to use results from games with less players.

Definition 2. Extremal Profiles: Let 3!, 5! be the extremal profiles for some

player i. These two particular profiles are defined as follows:

—t—1
s = arg maxAlL(s_;, z;)
SfiESi;-l
t—1 .
s =argmin AlL;(s_;, x;)
S_iGSt_;l

In words,® by strategic substitutes (A1 (SS)) if player 7, upon receiving a signal

8Notice that by strategic substitutes (assumption A1), that both 3:1 and §:-1 are determined
independently of the value of x;.
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x; and assuming that his opponents are using the strategy profile 3! ('), chooses
action 0 (1) he will choose action 0 (1) for all s_; € S
Analogously define 3!, 57! as the extremal profiles restricted to gt:il, where

recall gt_’il is defined by equation 2. More formally:

—rt—1
s, € argmaxAll;(s_;, x;)
S,iGSt_;l

t—1
—1

st € argminAllL(s_;, x;)

s,ieg“:-l

Therefore, since by definition S*;' D St-t by strategic substitutes the following

7

inequalities holds for all s_; € S, :

ATL(E 5 2) > AIL(GES ! ;) > Alli(s_y, o) and

AHz‘(S_Z',ZL’Z‘) > AHZ‘(S/til ZL’Z) Z AHz‘<St71 .Z’Z)

23

Lemma 4. Consider a game G (o) satisfying assumptions (A1) to (A5). Suppose
3t such that Sy = {sy}, then S = {s*} and s* € BNE(Gy(0)).

Proof. If player N plays the strategy sy (-; ky), i.e.

— 1 Zf N > EN
sy(rniky) = _
0 Zf ry < /ﬂN

Then the subset of players {1...N — 1} face a reduced game Gy_1(o, s} ). For the
subset of signal [X — o, ky — o] it is also easy to check that Gy_;(0,s%) satisfies

assumption Al to A5. From Lemma 5.A (stated at the end of this appendix), or ap-
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plying the Carlsson and van Damme result,’ we know that any game G (o) satisfying
assumptions A1l to A5 has the equilibrium structure according to equation 1. Then by
induction we can assume that Gy_1(o, s}) has a unique equilibrium also according
equation 1. Therefore S* = {s*}.

Using the same argument, but starting from the right hand side, it easy to check

that the unique best response for player N to the profile s* 5 is to play s3,.H

We prove next lemma 5. We will develop the proof using an induction argument in
the number of players, then in order to ease the exposition we first present a version

of lemma 5 but for the two player case. We call this previous lemma, lemma 5.A.

Lemma 5.A. Consider a game Gy(0) satisfying assumptions Al to A5. Then
37 > 0s.t. Vo € (0,5) the conditionally undominated sequence {S*}$°, satisfies:

i) Vt Vi

St={sy:s1(v1) =0if o1 <ay <ky and si(z;) =1if v; € (ky,20) U (k1, X)}

St = {sy: 89(x3) =0if 29 < 2b and si(x;) = 1if 29 > ko}

and if then zf > a!.

i) 3t st.Vt>t, ob =k

Proof. Part i). First let us define & = min {(k, — k,), (k2 — k1), 00} , where o¢ is
defined according to Lemma 3. Now, from Al (SS) if s; is a best response (BR) to
a switching strategy sq(-; k5), it will be a BR to any s, € S9, then it is easy to check
that

ATl (so(wa;ky), 1 = ky —0) = Amy(0,ky —0) >0

ATl (so(wo5ky), 1 = ky+0) = A (1, kg +0) <0

9See theorem page 996, Carlsson and van Damme (1993)
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So, given continuity of the payoff function we can use the intermediate value

theorem: 3 z1 > k;, where x] = min {z; : AIl;(so(; ky), 1) = 0} and®

St = {81 €8Y:si(r)=0if 2y <kyand sy(x1) =1if 21 € (ky,27) U (El,oo)}

Now, player 2’s first round of elimination proceeds as follows: by Al (SS), if

sy € Sy is a BR to s (:;z7), where s; (-;2;) to denote the “inverse” switching
strategy, which switches from 1 to 0 at z;, it will be a BR to any s; € Si. Then the

net payoff of player 2 observing a signal zo = k, and facing a strategy sy (;z1) is

AThy(s7 (521), 72 = ky) = Ama(1, k) Fo (2 | ko) + Ama(0, ko) (1 — Fo(zy | ky))

From A4 (IS) Amy(0,ky) = 0 and from A1 (SS) Ama(1, k) < 0. Since 0 < F,(z1 |
ko) < 1, therefore ATly(sy (v 1), ky) < 0.

Now, by Al (SS) Ally(s; (;21), 22 = 21 + o) = Amy(0,23) > 0. Again, given
continuity of the payoff function we can use the intermediate value theorem: 3 z}

> ky, where 23 = min {5 : Ally(s7 (-;21),22) =0}, and
Sy ={s2€ 59 55(22) = 0if w2 <y and so(xa) = 1if 12> ka}

Repeating this process of iteration it is easy to prove by induction that a strategy
profile s surviving ¢ rounds of elimination is contained in the set S* such that:
Stidsy:si(z) =0if vy <k, and sy(x1) = 1if 21 € (ky,2t) U (k1, X)}

St sy sy(x0) = 0if wo < 2h and sy(ws) = 1if 29 > ko)

19Notice that by construction 0 < ky — 21 < &
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and z}, 2} are obtained recursively from the following equations

zi = min {z; : Al (so(-;25 "), 1) = 0} (4)

zh = min {xy : Ally(sy (5 2}),22) =0} (5)

Finally, notice that the process governed by equations 4 and 5 defines two strictly
increasing sequences {z{} {z5} where zj > z{ Vt.

Part 7). Now, let us suppose now that there exist the limit point z3° and by
construction there also exists 25° where 0 < 25° — 2° < 0. Rewriting the conditions
of equations 4 and 5 and using the equivalence F,(z° | 23°) = 1 — F,(25° | 23°) we
get

Ay (1, 23°) Fo (277 | 23°) + Ami(0,27°) (1 — Fo(ay” | 25°)) =0

Ay (1, 25°) Fo (27° | 23°) + Ama(0,25°) (1 — Fo(ay” | 25°)) =0 (6)

It must be also true that the difference between these two equations is zero as

well, so

(Amy (1, 27°%) = Amy(1, 23°)) Fo (27 | 23°) + (7)

(A (0,27°) = Ama(0,25°))(1 = Folzi® | 257)) =0

but from lemma 3 and since 0 < F,(z3° | 23°) < 1 we know that each term
in equation 7 is strictly positive, then AIL;(s2(-;25°), 25°) — Ally(sy (+;2;), 25°) > 0.
Contradiction. Hence, since {2} } is an increasing unbounded sequence it must be the
case that 3 t* s.t. Vt > t* 21 > k;. i.e. in a finite number of steps the sequence

reaches the upper dominance region eliminating all strategies but one: sq(+;k;). On
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the other hand z} < ky which implies that Ally(s(:; k), 25 ) = Amg(l,2h) <
0, therefore b ™ = ks is the last expected payoff where he is indifferent between
the two actions: AIl(sy(-;k,), k2) = Ama(1, ky) = 0. Finally set ¢/ = ¢*+1 then V¢ >
t, zh =kl

Lemma 5. Consider a game Gn(0) satisfying assumptions (A1) to (A5). Then
37 > 0 s.t. Vo € (0,7) the conditionally undominated sequence {S'}°, satisfies:

i) Yt Vi

St = {s; : si(x;) = 04f x; < min{al, x}} and si(x;) = 1if x; € (af,2)U
(kn, X +0)}

and if i > j then zi > x’.

i) It st. YVt >t oy =ky

Proof. First define @ = min {(k; — k;_,)N, (ki — ki_1)~, 00} , where ogis cal-
culated according to Lemma 2. Second, since we need to prove that both parts of
the lemma are true for all 7 and for all ¢, let us introduce an induction argument in
the number of players. Lemma 5.A shows that Lemma 5 is true for games with two
players Gs(0) satisfying assumptions Al to A5. Therefore let us assume that lemma
5 remain valid for games with N — 1 players satisfying assumptions Al to A5.

Now, having assumed the inductive process in the number of players, we will prove
the first part of Lemma 5 through induction in ¢ and we will prove the second part

showing that Gy (o) is “composed” of two reduced games.

Proof of part i). First consider the first round of conditional elimination, ¢t =
1. By definition of o, we know that ky ; < ky,—oc then!' Vi = 1,..N — 1 and
Va; < ky — o player i’s payoff is All;(s_g ny, sy = 0).Then, the subset of players
{1...N — 1} face a reduced game Gn_1(0, sy = 0). It is easy to check that for signals

URecall that ky_; > ... > k;
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in the subset [X — 0, ky — o], the reduce game Gy_1(0, sy = 0) satisfies assumptions
Al to A5. By the induction assumption we know that Lemma 5 holds for games with
N — 1 players, then for players 1 to N — 1 the first round of elimination coincide with
the one in the reduced game. More formally: for every player in Gn_1(o, sy = 0) there
exist Z' and S, hence z! = 2 and S! = S!. Now, since z%_, < ky — o, then the
minimum signal for which player N is indifferent between the two actions is ky, i.e.
zk, = ky. Therefore the undominated set S} contain all strategies that plays the
dominant action in the corresponding dominant region, i.e. Sk = {sy : sy(zy) =
0if xy <z and 1if zx > ky}.

Now, following the induction argument in ¢, we assume that lemma 5 is true for a
round ¢ — 1. Let us divide the analysis in to possible cases:

a) if iyt <2,

b) if 2, > 2y,

and let us show that the lemma is true in both cases.

a) First, without loss of generality let assume that some player [ € {1,..., N —1} is
the “last” player to reach his threshold ;. Therefore the induction assumption can
be states as follows:

Vi=1,..,1

St = s si(wy) =0if vy <2t and 1if x; € (zf,207 1) U (ki X)}

Vi=(1+1),...,N

St = {s; i si(w) =0if vy <2t and 1if z; > k;},

and if i > j then z!™' > gﬁfl

Now it is enough to prove that S has the same structure as S'!, i.e players
i=(41),..,N — 1 will increment the set of signals where they pick action 0 and

players ¢ = 1, ..., [ will increment the set of signals where they pick action 1.

By strategic substitutes, for all i = ({4 1), ..., N — 1 the component of the extreme
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t—1
—7

profile 5 associated with the N player is sN(-;EN). Then if player ¢, upon
receiving a signal x; and assuming that his opponents are using the strategy profile
5.1, chooses action 0 he will choose action 0 for all s_; € gt:il.

Recall that if players ¢ = 1, ..., choose action 1 when other players’ strategy is

t—1
—7

s they will pick action 1 for all s_; € g’ii. We now prove that Vi € {1,...,1}

nt—1
71 9

and Vz; < xj3_;, the component, of the extreme profile s associated with the
N player is sy(-;ky) as well. Suppose by way of contradiction that the strategy
is different from Sy(-;ky)) for some z; < x%_,. Then 3 a neighborhood O C [x; —
o,x;+ 0] such that on O sy(zy) = 1. Since for signals less than x%,_; we cannot have
the N — 1 dimensional profile (1,...,1) on O. By anonymity permute player N with
some player j §;~t’1(acj) = 0, then by strategic substitutes this permuted strategies
lower payoff AlIl;, and so §’:1 could not have been a minimizer of AlIl; on gt_;l.

Now, we conclude that, for all signal less than %, _, the extremal profiles 5! Vi €
{(I+1),...,N —1}and &";' Vi € {1,...,1} coincide at least in their last component;
both profiles consider player N playing the switching strategy sy(-; k). Then the
subset of players {1..., N — 1} face a reduced game Gy_i(0,sy = 0). It is easy to
check that for the subset of signal [X — o, z%_,], the reduced game Gx_1(0, sy = 0)
satisfies assumptions Al to A5. By the induction assumption we know that Lemma
5 holds for games with N — 1 players, then for players 1 to N — 1 the round of
elimination t coincides with the same round of the reduced game. More formally: for
every player in Gy_1(c, sy = 0) there exist Z and S¢, hence z! = 2 and S! = S, i.e.
St have the same structure than S!™! for all i € {1,..., N — 1}.

By assumption A5 (Players Order) and using the intermediate value theorem it is

—t—1

easy to check that there exists z’y > ay_; such that AIly(3"y,z%) = 0. Therefore

St = {sn:sy(ay) =0if oy < 2l and sy(zy) = 1if xx > ky}

b) In this second case we assume that z’y?

1 > Tx_;. We will follow the same
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argument described and used in the previous part. Now, since we are considering
signals such that z%!, > 2% _, we know that players 1 to N — 1 have reached his
threshold . By strategic substitutes, for all i = i = 2,..., N — 1 the component, of
the extreme profile 5!, associated with the first player is s1(-;k;). Then if player

—7
7, upon receiving a signal z; and assuming that his opponents are using the strategy

t—1

profile s”.7, chooses action 1 he will choose action 1for all s_; € gt:il.

On the hand we need to prove that player N will increment the set of signal where
he picks action 0, then if this player chooses action 0 when other players’ strategy is
5, they will pick action 0 for all s_; € §t_z-. We now prove that the component, of
the extreme profile E'fjvl, associated with the first player is s;(+; k;) as well. Suppose
by way of contradiction that the strategy is different from s;(-;k;) for some z; >
2y _;. Then 3 a neighborhood O C [x; — 0, 2; + o] such that on O s;(x;) = 0. Since
for signals greater or equal than z%,_, we cannot have the N — 1 dimensional profile
(0, ...,0) on O. By anonymity permute player 1 with some player j §;-t’1(acj) =1, then
by strategic substitutes this permuted strategies higher payoff AIl;, and so s";* could
not have been a maximizer of AIl; on gt__il.

Now, we conclude that for all signal greater or equal than x%_; the extremal
profiles §:1 Vi € {2,...,N — 1}and E’fjvl coincide at least in their first component;
both profiles consider player 1 playing the switching strategy si(+; k;). Then the subset
of players {2..., N} face a reduced game G _1(0, s; = 0). It easy to check that for the
subset of signal [z%,_;, X+0,] the reduced game G y_1 (o, s; = 0) satisfies assumptions
A1 to A5. By the induction assumption we know that Lemma 5 holds for games with
N — 1 players, then for players 2 to N the round of elimination ¢ coincides with the
same round of the reduced game. More formally: for every player in Gy_1(0,s1 =
0) there exist Z! and S¢, hence 2! = Z' and S! = 5!, i.e. S have the same structure

than S!™! for all i € {2,..., N}.

By assumption A5 (Players Order) and using the intermediate value theorem it
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is easy to check that there exist zt < zf such that Ally (57t 2t) = 0. Therefore
Yy Ly L9 1547

St={s1:51(r1)=0if 2y <kyand sy(x1) =1if 21 € (ky,28)U (k1, X +0)}.

Proof of part ii) By the induction argument we know that in both reduced games,
Gn_1(o,sy = 0) and Gy_1(0,s1 = 0) described above, the higher player completes
the elimination of conditionally dominated strategies in a finite number of steps.
Since we treated game Gy (o) as it were “composed” of two reduced games, player
N in Gy(0) also completes the deletion process in a finite number of steps, i.e.

It st.Vt>t, ofy =ky.H
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