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Abstract

Earnings heterogeneity plays a crucial role in modern macroeconomics. We
document that mean earnings and measures of earnings dispersion and skewness
all increase in US data over most of the working life-cycle for a typical cohort
as the cohort ages. We show that (i) a human capital model can replicate these
properties from the right distribution of initial human capital and learning
ability, (ii) differences in learning ability are essential to produce an increase
in earnings dispersion over the life cycle and (iii) differences in learning ability
account for the bulk of the variation in the present value of earnings across
agents. These findings emphasize the need to further understand the role and
origins of initial conditions.
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1 Introduction

Recent work in macroeconomics has explored the quantitative implications of dynamic
models for the distribution of consumption, income and wealth. This work takes earn-
ings or wages as an exogenous random process and then proceeds to characterize the
distributional implications of optimal consumption-savings and labor-leisure behav-
ior.1 These models would appear to be attractive for assessing the distributional
effects of changes in government policy since they are able to produce many of the
quantitative features of the actual distribution of consumption, income and wealth.2

A critical issue for this research agenda is to integrate deeper foundations for
the determinants of earnings and wages into these models by allowing earnings to
be endogenous. We list two reasons for why this is important. First, we note that
when earnings are exogenous there is no channel for policy to affect consumption
and welfare through earnings. This channel is arguably of first order importance.
In fact, a dominant theme in the earnings distribution literature is that earnings
profiles are determined by the optimal investment of time and resources into the
accumulation of skills. As a result, these investment decisions will not be invariant
to changes in government policies. Second, a key issue for the purposes of assessing
many government policies is the degree to which the variation in the present value of
earnings is due to differences established early in life versus shocks received over the
life cycle. If the former is responsible for the bulk of the variation in earnings, then
policies directed towards these initial differences are of first-order importance.

This paper takes a first step towards developing deeper foundations by examining,
at a quantitative level, the earnings distribution dynamics of a well-known and widely-
used human capital model. More specifically, we document properties of how the US
earnings distribution evolves for a typical cohort of individuals as the cohort ages.
We then assess the ability of the model to replicate these properties. This assessment
serves to highlight the potential role and importance of differences in initial conditions
for understanding the dynamics of the earnings distribution.

The specific properties of the US earnings distribution that we focus on relate
to how average earnings, and measures of earnings dispersion and skewness change

1See, for example, Cagetti (2002), Carroll (1997), Castañeda et. al. (2002), Deaton (1992), De
Nardi (2002), Domeij and Klein (2001), Gourinchas and Parker (2002), Heathcote, Storesletten and
Violante (2003), Hubbard et. al. (1994), Huggett (1996), Krueger and Perri (2002), Krueger and
Fernandez-Villaverde (2001), Quadrini (2000) and Storesletten, Telmer and Yaron (2004).

2These models have been widely applied. Focusing solely on the issue of social security reform,
the literature includes Deaton et. al. (2002), De Nardi et. al. (1999), Fuster (1999), Huggett and
Ventura (1999), Imrohoroglu et. al. (1995), Storesletten, Telmer and Yaron (1999) among others.
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for a typical cohort as the cohort ages. To characterize these age effects, we use
earnings data for US males and employ a methodology, described later in the paper,
for separating age, time and cohort effects in a consistent way for a variety of earnings
statistics. Our findings, summarized in Figure 1, are that average earnings, earnings
dispersion and earnings skewness increase with age over most of the working life-cycle.

[Insert Figure 1 a-c Here]

We assess the ability of the Ben-Porath (1967) human capital model to replicate
the patterns in Figure 1. This framework is the natural candidate for our study.
The Ben-Porath model is well-known and widely-used, and has been the basis for
both theoretical and empirical analyses of human capital (e.g., its prominence in the
literature is reflected in recent surveys, such as Mincer (1997) and Neal and Rosen
(1999)).3 In our version of this model, each agent is endowed with some immutable
learning ability and some initial human capital. Each period an agent divides available
time between market work and human capital production. Human capital production
is increasing in learning ability, current human capital and time allocated to human
capital production. An agent maximizes the present value of earnings, where earnings
in any period is the product of a rental rate, human capital and time allocated to
market work.

Our assessment focuses on the dynamics of the cohort earnings distribution pro-
duced by the model from different initial joint distributions of human capital and
learning ability across agents. Our findings are striking. We establish that the earn-
ings distribution dynamics documented in Figure 1 can be replicated quite well by
the model from the right initial distribution. In addition, the model produces the
key properties of the cross-sectional earnings distribution. These conclusions are not
sensitive to the precise value of the elasticity parameter in the human capital produc-

3Earnings distribution facts have long been interpreted as being qualitatively consistent or in-
consistent with specific human capital models. This is standard in the earnings and wage regression
literature (e.g. Card (1999)), in the many excellent reviews of human capital theory (e.g. Weiss
(1986), Mincer (1997) and Neal and Rosen (2000)) and in work that simulates properties of human
capital models (e.g. von Weizsacker (1993)). In contrast, Heckman (1975, 1976), Haley (1976), Rosen
(1976) and a number of related papers provide a quantitative assessment. However, distributional
implications were not addressed because model parameters were estimated so that the age-earnings
profile produced by one agent in the model best matches the earnings data. Our work is closest to
the work by Heckman, Lochner and Taber (1998) and Andolfatto, Gomme and Ferrall (2001) who
use human capital models with agent heterogeneity to analyze a number of distributional issues.
The former focuses on time variation in the skill premium, whereas the latter focuses on earnings,
income and wealth profiles.
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tion function, nor are they sensitive to the age at which human capital accumulation
process articulated by the model begins.

The initial distributions which replicate the patterns in Figure 1 rely crucially on
differences in learning ability across agents. Age-earnings profiles for agents with high
learning ability are steeper than the profiles for agents with low learning ability. This
is the key mechanism for how the model produces increases in earnings dispersion
and skewness for a cohort as the cohort ages. Earnings profiles are steeper for high
ability agents since early in life they allocate a relatively larger fraction of their time
to human capital production and thus have low earnings, while their time allocation
decisions and high learning ability imply that later in the life-cycle they have higher
levels of human capital and, hence, earnings. This mechanism is consistent with
regularities long discussed in the human capital literature such as the fact that time
allocated to skill acquisition is concentrated at young ages, that age-earnings profiles
are steeper for people who choose high amounts of schooling and that the present
value of earnings increases in a measure of learning ability.4

It is important to mention that it is not the case that the model can always
match a set of life-cycle earnings distribution facts, provided that one can choose an
infinite number of parameters characterizing the initial distribution. Proposition 1
in section 3 shows that when all agents are born with the same learning ability, but
different initial human capital, the model always generates a counterfactual pattern of
decreasing earnings dispersion no matter how one chooses the distribution of human
capital across agents. Intuitively, one can always exactly match any distribution of
earnings at the end of the working life-cycle provided one can choose the distribution
of initial human capital freely. However, the ability to match the facts documented in
Figure 1 requires that one exactly matches the earnings distribution in the end of the
working life cycle as well as in all previous periods. Thus, having an infinite number
of parameters to choose in the form of an unrestricted initial distribution does not
guarantee that one can match the patterns in Figure 1.

We close the paper by contrasting the implications of the model with some evi-
dence on persistence in individual earnings. The model implies that over time both
individual earnings levels and earnings growth rates are strongly positively correlated.
Evidence from US data shows that earnings levels are positively correlated but that
earnings growth rates one year apart are negatively correlated. This and related evi-
dence suggests that there is potentially an important role for idiosyncratic shocks that
lead to mean reversion in earnings. These shocks are by construction absent from the

4Mincer (1997) summarizes evidence on the first point and Lillard (1977) provides evidence on
the last two points.
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benchmark model. A critical issue for future work is to determine the importance of
both initial conditions and shocks over the life-cycle in models in which the earnings
distribution is endogenous.5 We believe that this issue can be usefully pursued by
investigating both the distributional dynamics of earnings and consumption over the
life cycle.

The paper is organized as follows. Section 2 describes the data and our empirical
methodology. Section 3 presents the model. Section 4 discusses parameter values.
Section 5 presents the central findings of the paper. Section 6 concludes.

2 Data and Empirical Methodology

2.1 Data

The findings presented in the introduction are based on earnings data from the PSID
1969-1992 family files. We utilize earnings of males who are the head of the house-
hold. We consider two samples. We define a broad sample to include all males who
are currently working, temporarily laid off, looking for work but are currently unem-
ployed, students, but does not include retirees. The narrow sample equals the broad
sample less those unemployed or temporarily laid off. We note that the theoretical
model we analyze is not a model of unemployment or lay offs. This would suggest
that the narrow sample is more relevant. However, since the results are not sensitive
to the choice of sample we present the results for the broad sample.

We consider males between the ages of 20 and 58. This is motivated by several
considerations. First, the PSID has many observations in the middle but relatively
fewer at the beginning or end of the working life cycle. By focusing on ages 20-58, we
have at least 100 observations in each age-year bin with which to calculate age and
year-specific earnings statistics. Second, near the traditional retirement age there is a
substantial fall in labor force participation that occurs for reasons that are abstracted
from in the model we analyze. This suggests the use of a terminal age that is earlier
than the traditional retirement age. We also restrict the sample to those with strictly
positive earnings. This is not essential to our methodology but it does allow us to
take logs as a convenient data transformation. This restriction almost never binds.6

Finally, we exclude the Survey of Economic Opportunities (SEO) sample which is

5Keane and Wolpin (1997) address this issue in the context of a model with an occupational
choice decision. Storesletten et. al. (2004) do so in a model of exogenous earnings.

6Most of those who report being laid off, unemployed or students turn out to have some earnings
during the year.
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a subsample of the PSID that over samples the poor. Given all the above sample
selection criteria, the average and standard deviation of the number of observations
per panel-year are 2137 and 131 respectively.

2.2 Construction of Age Profiles

We focus the analysis on cohort-specific earnings distributions. Let ep
j,t be the real

earnings at percentile p of the earnings distribution of agents who are age j at time t.
These agents are from cohort s = t− j (i.e., agents who were born in year t− j).7 We
assume that the percentiles of the earnings distribution ep

j,t are determined by cohort
effects αp

s, age effects βp
j and shocks εp

j,t. The relationship between these variables is
given below both in levels and in logs, where the latter is denoted by a tilde.

ep
j,t = αp

sβ
p
j ε

p
j,t

ẽp
j,t = α̃p

s + β̃p
j + ε̃p

j,t

This formulation is consistent with the theoretical model that we present in the
next section. In particular, in a steady state of the model with a constant growth
rate of the rental rate of human capital, ep

j,t is produced by a cohort effect αp
s that is

proportional to the rental rate in cohort year s, a time-invariant age effect βp
j and no

shocks (i.e. εp
j,t ≡ 1 and ε̃p

j,t ≡ 0). Expressed somewhat differently, in steady state the
cross-sectional, age-earnings distribution just shifts up proportionally each period.

We use ordinary least squares to estimate the coefficients α̃p
s and β̃p

j for various
percentiles p of the earnings distribution.8 In Figure 2 we graph the age effects of
different percentiles of the levels of the earnings distribution by plotting βp

j . The age
effects βp

j are scaled so that each graph passes through the geometric average value
at age j = 40 of ep

j,t across all cohorts and so that mean earnings equal 100 at the
end of the working life cycle.9 The percentiles considered in Figure 2 range from a

7Real values are calculated using the CPI. To calculate ep
j,t we use a 5 year bin centered at age

j. For example, to calculate earnings percentiles of agents age j = 30 in year t = 1980 we use data
on agents age 28− 32 in 1980. We also use a 5 year bin centered at ages 20 and 58. To do this we
use data on agents age 18-22 and 56-60.

8Each regression has J × T dependent variables regressed on J + T cohort dummies and J age
dummies. T and J denote the number of time periods in the panel and the number of distinct age
groups, which in our case equal J = 58− 20 and T = 1992− 1969.

9More specifically, we plot βp
j ep

40/βp
40, where ep

40 is the geometric average real earnings at age 40
and percentile p in the data. We then scale all profiles by a common factor to normalized mean
earnings to 100.
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low of p = .025 (earnings such that 2.5 percent of the agents are below this value) to
a high of p = .99 (earnings such that 99 percent of the agents are below this value).
We calculate 23 different percentiles p = .025, .05, .10, ..., .90, .925, .95, .975, .99, but
for visual clarity display only a subset of these in Figure 2.

[Insert Figure 2 Here]

The findings in Figure 1a-c in the introduction are all calculated directly from
the results graphed in Figure 2. Figure 1a shows that average earnings increase with
age over most of the working life cycle. Early in the life cycle this follows because
earnings at all percentiles in Figure 2 shift up with age. Later in the life cycle this
follows from the strong increase with age at the highest percentiles of the earnings
distribution despite the fact that earnings at the median and lower percentiles are
already decreasing with age. The increase in earnings dispersion in Figure 1b, using
the Gini coefficient as a measure of earnings dispersion, follows from the general
fanning out of the distribution which is a striking feature of Figure 2. The increase
in the skewness measure with age in Figure 1c is implied by the strong fanning out
at the top of the distribution observed in Figure 2.

2.3 Alternative Views of Age Effects

A more general specification of the regression equation used in the last subsection
would allow the percentiles of the earnings distribution to be determined by time
effects γp

t in addition to age βp
j and cohort αp

s effects as in the equation below. Once
again, a logarithm of a variable is denoted by a tilde. Time effects can be viewed as
effects that are common to all individuals alive at a point in time. An example would
be a temporary rise in the rental rate of human capital that increases the earnings of
all individuals in the period.

ep
j,t = αp

sβ
p
j γ

p
t ε

p
j,t

ẽp
j,t = α̃p

s + β̃p
j + γ̃p

t + ε̃p
j,t

The linear relationship between time t, age j, and birth cohort s = t − j limits
the applicability of the regression specification above. Specifically, without further
restrictions the regressors in this system are co-linear and these effects cannot be
estimated. This identification problem is well known in the econometrics literature.10

10See, for example, Weiss and Lillard (1978), Hanoch and Honig (1985) and Deaton and Paxson
(1994) among others.
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In effect any trend in the data can be arbitrarily reinterpreted as a year (time) trend
or alternatively as trends in ages and cohorts.

Given this problem, our approach is to determine how sensitive the age effects in
Figure 1 and 2 are to alternative restrictions on the coefficients (α̃p

s, β̃
p
j , γ̃

p
t ). One view,

which we label the cohort dummies view, comes from constructing Figure 2 by setting
time effects to zero (i.e. γ̃p

t = 0) as was done in the last subsection. A second view,
which we label the time dummies view, comes from constructing Figure 2 by setting
cohort effects to zero (i.e. α̃p

s = 0).11 A third view, which is intermediate to both
previous views, comes from constructing Figure 2 after allowing age, cohort and time
effects but with the restriction that time effects are mean zero and are orthogonal
to a time trend.12 This restriction implies that time trends are attributed to cohort
and age effects rather than time effects. We label this last view the restricted time
dummies view.

[Insert Figure 3 (a-c) Here]

Figure 3 highlights the age effects on average earnings, earnings dispersion and
earnings skewness using these three views. The results are that all three views lead
to the same qualitative results. Quantitatively, the cohort dummies view is almost
indistinguishable from the restricted time dummies view. The time dummies view
produces a flatter profile of earnings dispersion as compared to the cohort dummies or
restricted time dummies view. In the remainder of the paper we focus on the results
from the cohort dummies view highlighted in Figure 1.

2.4 Related Empirical Work

Our empirical work is related to previous work both at a substantive and a method-
ological level. At a substantive level, labor economists have examined patterns in
mean earnings and measures of earnings dispersion and skewness at least since the
work of Mincer (1958, 1974), where the focus was on cross-section data. A common
finding from cross-section data is that mean earnings is hump-shaped with age and
that measures of earnings dispersion tend to increase with age. A number of studies
(e.g. Creedy and Hart (1979), Shorrocks (1980), Deaton and Paxson (1994), Stor-
resletten et. al. (2002)) have examined the pattern of earnings dispersion in cohort

11Each regression has J×T dependent variables regressed on T time dummies and J age dummies.
This regression has J less regressors than the regression incorporating cohort effects.

12Formally, this normalization requires that 1
T

∑T
t=1 γ̃t = 0 and 1

T

∑T
t=1 γ̃tt = 0. Appendix A

provides more details on how we carry out this estimation.
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or repeated cross-section data and have found that dispersion tends to increase with
age.13 Schultz (1975), Smith and Welch (1979) and Dooley and Gottschalk (1984)
present evidence that dispersion profiles are U-shaped in that a measure of dispersion
decreases early in the life cycle and then later increases with age. We find a slight
U-shape in the dispersion profile when dispersion is measured by the Gini coefficient.

At a methodological level, our work and a number of the studies cited above go
beyond the early work based on a single cross-section. In particular, these studies
separate age effects from cohort and/or time effects using panel data or repeated
cross-sections. For example, Deaton and Paxson (1994) focus on how the variance of
log earnings and the variance of log consumption in household-level data evolves over
the life cycle. Their main results are based on regressing the variance of log earnings
of a cohort on age and cohort dummies. They use the estimated age coefficients to
highlight the effect of aging. The methodology that we employ is broadly similar.
However, since we are interested in several earnings statistics there is the issue that
if we were to employ this procedure on each separate statistic of interest then age
and cohort effects would be extracted in a different way for each statistic. Our
proposed solution is to employ the same procedure directly on the percentiles of the
age and cohort specific earnings distributions. This procedure produces the age effects
graphed in Figure 2. Using Figure 2, one can calculate the resulting age effects for
any statistic of interest, knowing that cohort and/or time effects have been extracted
in a consistent way.

3 Human Capital Theory

An agent maximizes the present value of earnings over the working lifetime by dividing
available time between market work and human capital production.14 This present
value is given in the decision problem below, where r is a real interest rate and
earnings in a period equal the product of the rental rate of human capital wj, the
agent’s human capital hj and the time spent in market work (1 − lj). The stock of
human capital increases when human capital production offsets the depreciation of
current human capital. Human capital production f(hj, lj, a) depends on an agent’s

13Creedy and Hart (1979) and Shorrocks (1980) use individual-level data, whereas Deaton and
Paxson (1994) and Storresletten et. al. (2002) use household-level data.

14We note that utility maximization implies present value earnings maximization in the absence
of a labor-leisure decision and liquidity constraints. Hence, nothing is lost for the study of human
capital accumulation and the implied earnings dynamics if one abstracts from consumption and asset
choice over the life-cycle.
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learning ability a, human capital hj and the fraction of available time lj put into
human capital production. Learning ability is fixed at birth and thus does not change
over time.

max
J∑

j=1

wjhj(1− lj)/(1 + r)j−1

subject to lj ∈ [0, 1], hj+1 = hj(1− δ) + f(hj, lj, a).

We formulate this decision problem in the language of dynamic programming.
The value function Vj(h; a) gives the maximum present value of earnings at age j
from state h when learning ability is a. The value function is set to zero after the last
period of life (i.e. VJ+1(h; a) = 0). Solutions to this problem are given by optimal
decision rules hj(h; a) and lj(h; a) which describe the optimal choice of human capital
carried to the next period and the fraction of time spent in human capital production
as functions of age j, human capital h and learning ability a.

Vj(h; a) = max
l,h′

wjh(1− l) + (1 + r)−1Vj+1(h
′; a)

subject to l ∈ [0, 1], h′ = h(1− δ) + f(h, l, a).

We focus on a specific version of the model described above that was first analyzed
by Ben-Porath (1967). In this model, the human capital production function is given
by f(h, l, a) = a(hl)α. Proposition 1 below presents key results for this model.

Proposition 1: Assume f(h, l, a) = a(hl)α, α ∈ (0, 1), the depreciation rate δ ∈
[0, 1), the rental rate equals wj = (1 + g)j−1 and the gross interest rate (1 + r) is
strictly positive. Then

(i) Vj(h; a) is continuous and increasing in h and a, is concave in h and hj(h; a)
is single-valued.

(ii) If in addition aAj(a)α + (1− δ)Aj(a) ≥ Aj+1(a), then the optimal decision
rules are as follows:

hj(h; a) =

{
aAj(a)α + (1− δ)h for h ≥ Aj(a)

ahα + (1− δ)h for h ≤ Aj(a)

10



lj(h; a) =

{
Aj(a)/h for h ≥ Aj(a)

1 for h ≤ Aj(a)

Aj(a) ≡ (
aα(1 + g)

1 + r
)

1
1−α (

J−j∑

k=0

[
(1 + g)(1− δ)

(1 + r)
]k)

1
1−α

(iii) Let the initial distribution of human capital and ability be such that all
agents have the same ability a > 0 but different human capital levels and that all
agents earnings are strictly positive. Also let aAj(a)α +(1− δ)Aj(a) ≥ Aj+1(a).
Then the Lorenz curve for both human capital and earnings produced by the
model becomes more equal for a cohort as the cohort ages.

Proof: See the Appendix.

We now comment on the implications of Proposition 1. First, the fact that Vj(h; a)
is concave in human capital means that each period the decision problem is a concave
programming problem. Thus, standard techniques can be used to compute solutions
regardless of any further restrictions on the parameters of the model. Our methods for
computing solutions, which are described in the Appendix, employ these techniques.

Second, if the parameters of the model are restricted then a simple, closed-form
solution exists. The solution has the property that an agent spends all time in hu-
man capital accumulation provided that current human capital is below an age and
ability dependent cutoff Aj(a). The restrictions in Proposition 1(ii) amount to the
assumption that once an agent with ability a stops full-time schooling (i.e current
human capital is above the cutoff level Aj(a)) then the agent never returns to full-
time schooling (i.e. future human capital remains above future cutoff levels Aj+1(a)).
The parameter values used in this paper turn out to satisfy these restrictions at all
ability levels for the initial distributions of learning ability and human capital that
best match the facts documented in Figure 1.

Third, the fact that the decision rule for human capital hj(h; a) in Proposition
1(ii) is increasing in both current human capital and learning ability has a number
of implications. For example, at the end of the working life cycle the agents who
are high earners are precisely those who started off with high initial human capital
and/or ability. This is true since at the end of the life cycle earnings are proportional
to human capital. Similar reasoning implies the greater the dispersion in earnings
at the end of the working life cycle the greater is the required dispersion in human
capital or learning ability at the beginning of the life cycle. This is key for this paper
as it focuses on characterizing the nature of initial agent heterogeneity that is critical
for replicating observed earnings distribution dynamics.
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Fourth, Proposition 1 (iii) highlights a key property of the model. Specifically, if
all agents within an age group have the same learning ability, then as these agents
age both human capital dispersion and earnings dispersion must decrease for any
dispersion measure consistent with the Lorenz order. More precisely, the Lorenz
curves for human capital and earnings can be ordered in the sense that the Lorenz
curve for age j lies strictly below the corresponding Lorenz curve for age j + 1 and
so on. This follows from the fact that agents with the lower human capital have
higher human capital growth rates and the fact that agents with lower earnings have
higher earnings growth rates. This result implies that differences in learning ability
are absolutely fundamental for this model to be able to produce even the qualitative
pattern of growing earnings dispersion documented in Figure 1.

Finally, we comment on one form of heterogeneity that we abstract from. Individ-
uals may conceivably face different rental rates for the same human capital services.
This could be motivated by racial or gender discrimination. We note that adding
exogenous differences in rental rates would not by itself produce either the increase in
earnings dispersion or skewness with age that we document in US data. More specif-
ically, if rental rates differ proportionally over the life cycle across agents, holding
initial human capital and learning ability equal, then earnings dispersion and skew-
ness would be counterfactually constant. This follows from Proposition 1, as such
differences do not alter human capital decisions even though they have proportional
effects on earnings.

4 Parameter Values

The findings of this paper are based on the parameter values indicated in Table 1.
The time period in the model is a year. An agent’s working lifetime is taken to be
either 39 or 49 model periods, which corresponds to a real life age of 20 to 58 and
10 to 58 respectively. These two values allow us to explore different views about
when the human capital accumulation mechanism highlighted by the model begins.
The real interest rate is set to 4 percent. The rental rate of human capital equals
wj = (1 + g)j−1 and the growth rate is set to g = .0014. This growth rate equals the
average growth rate in average real earnings per person over the period 1968-92 in our
PSID sample.15 Within the model the growth rate of the rental rate equals the growth
rate of average earnings, when rental growth and population growth are constant and
when the initial distribution of human capital and ability is time invariant. Given

15The growth rate of average wages (e.g. total labor earnings divided by total work hours) over
1968-92 in our PSID sample equals .0017.
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the growth in the rental rate, we set the depreciation rate to δ = 0.0114 so that
the model produces the rate of decrease of average real earnings at the end of the
working life cycle documented in Figure 1.16 The model implies that at the end of
the life cycle negligible time is allocated to producing new human capital and, thus,
the gross earnings growth rate approximately equals (1 + g)(1− δ). When we choose
the depreciation rate on this basis the value lies in the middle of the estimates in the
literature surveyed by Browning, Hansen, and Heckman (1999).

Estimates of the elasticity parameter α of the human capital production function
are surveyed by Browning et. al. (1999). These estimates range from 0.5 to almost
1.0. We note that this literature estimates α so that the earnings profile produced by
one agent in the model best fits the earnings data. Thus, the maintained assumption is
that everyone is identical at birth so that the initial distribution of learning ability and
human capital across agents is a point mass.17 We note that this initial distribution
is unrestricted by the theory and therefore treat it as a free parameter in our work.
Thus, we remain agnostic about the value of α and assess the model for values between
0.5 and 1.0.

Table 1: Parameter Values

Model Interest Rental Depreciation Production
Periods Rate Growth Rate Function

J = 39, 49 r = .04 g = .0014 δ = .0114 α ∈ [0.5− 1.0)

5 Findings

5.1 Earnings Distribution Dynamics

Earnings distribution dynamics implied by the model are determined in two steps.
First, we compute the optimal decision rule for human capital for the parameters
described in Table 1. Second, we choose the initial distribution of the state variable
to best replicate the properties of US data documented in Figure 1. The Appendix
describes how these steps are carried out.

16We use a rate of growth in earnings at the end of the life cycle equal to -0.01. The growth rate
in mean earnings at the end of the life-cycle from Fig. 1 is -0.0107 and -0.0078 for age groups 55-58
and 50-58 respectively.

17Heckman et. al. (1998) allow for agent heterogeneity. They estimate model parameters so that
earnings of one agent in the model best match earnings data for individuals sorted by a measure of
ability and by whether or not they went to college.
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We consider both parametric and non-parametric approaches for choosing the
initial distribution. In the parametric approach this distribution is restricted to be
jointly, log-normally distributed. This class of distributions is characterized by 5
parameters. In the non-parametric approach, we allow the initial distribution to
be any histogram on a rectangular grid in the space of human capital and learning
ability. In practice, this grid is defined by 20 points in both the human capital
and ability dimensions and thus, there are a total of 400 bins used to define the
possible histograms. In both approaches we search over the vector of parameters that
characterize these distributions so as to minimize the distance between the model and
data statistics for mean earnings, dispersion and skewness.18

The results are presented in Figure 4 and 5 for the parametric and non-parametric
case under the assumption that human capital accumulation starts at a real life age
of 10 and 20, respectively. Note that the model implications are very similar for these
two different starting ages. For a better visual presentation, we graph in all cases
results for only the central value of α = 0.7. We emphasize that similar quantitative
patterns emerge for all values of α between .5 and .9. These figures demonstrate
that the model is able to replicate the qualitative properties of the US earnings
distribution dynamics presented in Figure 1 both when the initial distribution is
chosen parametrically and non-parametrically. Moreover, the results for the non-
parametric case are quite striking: the model replicates to a surprising degree the
quantitative features of US earnings distribution dynamics.19

[Insert Figure 4 (a-c) Here]

[Insert Figure 5 (a-c) Here]

As a measure of the goodness of fit, we present in Table 2 the average (percentage)

18More precisely, we find the parameter vector γ characterizing the initial distribution that solves
the minimization problem below, where mj , dj , sj are the statistics of means, dispersion and inverse
skewness constructed from the PSID data, and mj(γ), dj(γ), sj(γ) are the corresponding model
statistics.

min
γ

J∑

j=1

([log(mj/mj(γ))]2 + [log(dj/dj(γ))]2 + [log(sj/sj(γ))]2)

This form of the objective ensures that the numerical solution to the problem is not affected by
the units of measurement of the statistics in question.

19As we explained in the introduction, this ability of the model to replicate the facts does not
rely upon the possibility of choosing an infinite number of parameters characterizing the initial
distribution.
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deviation, in absolute terms, between the model implied statistics and the data.20 By
this measure, on average the model implied statistics differ from the data by 2.5% to
3.8% in the non-parametric case for different values of the elasticity parameter of the
production function. In the parametric case, the fit is naturally not as good; in this
case the model differs from the data by 5% to 7.5%. Graphically, the parametric case
produces too much earnings skewness in each age group. Nonetheless, a parsimonious
representation of the initial distribution can go a long way towards reproducing the
dynamics of the US age-earnings distribution.

Table 2: Mean Absolute Deviation (%)

Case α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

Panel A: Accumulation starts at Age 10

Non-Parametric 3.5 3.2 2.6 2.5 2.8
Parametric 7.5 6.4 5.9 5.2 6.2

Panel B: Accumulation starts at Age 20

Non-Parametric 3.1 3.5 2.8 3.9 3.8
Parametric 6.8 7.0 5.2 5.0 6.4

To close this section, we note that the benchmark human capital model is also suc-
cessful in an alternative dimension. Specifically, features of the cross-section earnings
distribution implied by the model are roughly in line with the corresponding features
in cross-section data. We construct the cross-section earnings distribution implied
by the data using the cohort-specific earnings percentiles in Figure 2 together with
the assumption that the population growth rate is 1%. The resulting cross-sectional
earnings distribution has a Gini coefficient of 0.33, a skewness measure of 1.16 and a
fraction of earnings in the upper 20%, 10%, 5% and 1% of 40.2%, 25.1%, 15.5% and
4.7% respectively. The model for α = 0.7 in the non-parametric case implies a cross-
sectional earnings distribution with a Gini coefficient of 0.327, a skewness measure
of 1.18, with corresponding fractions of earnings in the upper tail of 40.9%, 27.0%,
17.5% and 6.1%.

5.2 Importance of Ability and Human Capital Differences

The previous section demonstrated that the US earnings distribution dynamics doc-
umented in Figure 1 can be fairly well matched by the model from the right initial

20The goodness of fit measure is [
∑J

j=1 | log(mj/mj(γ))|+ | log(dj/dj(γ))|+ | log(sj/sj(γ))|]/(3J).
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distribution of human capital and learning ability. Which features of this initial dis-
tribution are critical? We know from Proposition 1 in section 3 that differences in
learning ability have to exist across agents if the model is to produce any increase
in earnings dispersion for a cohort as the cohort ages. Thus, learning ability differ-
ences are essential. But could the model produce the patterns in Figure 1 with only
differences in learning ability and no human capital differences early in life?

To answer this question, we place a grid on values of learning ability, and search
for the distribution of learning ability and the common, fixed value of initial human
capital that best reproduces the facts presented in Figure 1.21 Our findings are
presented in Figure 6 where the model begins to operate when agents are at a real
life age of 10. Starting the model later than this age produces even more strongly
counterfactual implications.

We find that the model generates a much more pronounced U-shaped pattern for
earnings dispersion than is present in the data. To understand why this occurs recall
that all agents start life with the same level of human capital. Optimal accumulation
then dictates that early in the life cycle agents with high learning ability devote most
of their time or all available time to accumulating human capital. Thus, early in
the life cycle the earnings of high ability agents are lower than those of their low
ability counterparts. This follows from Proposition 1(ii) in section 3. The bottom
of the U-shape occurs where earnings of high ability agents overtake those of lower
ability agents. This occurs at about age 24 for the distribution which best matches
the data. After this age, earnings dispersion increases as high ability agents have
more steeply sloped age-earnings profiles than low ability agents. Thus, we conclude
that while differences in learning ability are essential, differences in human capital
early in the life cycle are also important. The next section goes on to show that a
positive correlation between learning ability and initial human capital is a feature of
the initial distributions which best match the data. This positive correlation lifts up
the age-earnings profiles of high ability agents relative to low ability agents and, thus,
reduces the strong U-shape in the dispersion profile displayed in Figure 6.

[Insert Figure 6 a-c Here]

Another way of assessing the importance of ability versus human capital differences
is to ask to what extent is the dispersion in the present value of earnings accounted
for by differences in learning ability alone. To answer this question, we undertake
a simple variance decomposition exercise. We calculate the variance of the present

21We put a grid of 20 values of learning ability (as in the general case) to search for the best
distribution.
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value of earnings (as of age 20), and report the percentage of this variance that can
be attributed to learning ability differences.22 Table 3 below shows that, once again,
differences in learning ability are key. They account for most of the variance in the
present value of earnings. In all cases, ability differences account for more than 60%
of the total variance. The residual variance is due to human capital differences at
fixed ability levels.

Table 3: Percentage Variance in PV of Earnings Due to Learning Ability Differences

Statistic α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

Panel A: Accumulation starts at Age 10

Non-Parametric 78.2 73.8 70.5 68.4 73.1
Parametric 77.8 72.9 68.0 77.1 79.2

Panel B: Accumulation starts at Age 20

Non-Parametric 62.7 63.1 63.5 64.4 65.1
Parametric 73.0 65.4 72.8 70.8 78.3

5.3 Properties of Initial Distributions

Tables 4 and 5 characterize properties of the initial distributions that produce the
earnings distribution implications highlighted in Figures 4 and 5. Several regularities
are apparent. First, the properties of means, dispersion, skewness and correlation in
Table 4 for the non-parametric case are similar to those in Table 5 for the parametric
case. Thus, the economic content of what the model and the data in Figure 1 impose
on the initial distribution appears not to be too sensitive to whether or not one
restricts this initial distribution in a parsimonious way.

Second, initial human capital and learning ability are positively correlated when
the human capital accumulation process articulated by the model starts at age 10
but are much more highly correlated when the process starts at age 20. This finding
is implied by the dynamics of the model. In particular, distributions which at age
10 have low correlation induce more highly correlated distributions in each successive
period as agents age. This occurs, according to Proposition 1, since in each period

22More formally, we proceed as follows. Let PV (a, h1) denote the present value
of earnings from initial condition (a, h1). The results in Table 3 report the ratio
[σ2(E(PV (a, h1)|a))/σ2(PV (a, h1))] × 100. The numerator is the variance across learning ability
levels of the mean present value of earnings, conditional on learning ability. The denominator is
total variance in the present value of earnings.
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high ability agents produce more human capital than low ability agents, holding initial
human capital at the beginning of life equal. Thus, when the initial distribution is
chosen to best match the data the model implies that the correlation between human
capital and learning ability increases as agents age.

Third, when the human capital accumulation process starts at age 10, the model
implies that for a cohort average human capital at the beginning of the life cycle is
less than at the end of the life cycle. Thus, there is net human capital accumulation
for a cohort over the life cycle. To see this point recall that mean earnings at age 58
is normalized to equal 100 and that the rental rate of human capital is set to equal
wj = 1.0014j−1. The implication is that mean human capital must be slightly less
than 100 at age 58 to match the earnings data at that age. Since mean human capital
early in life is less than this level the conclusion follows.

Table 4: Ability and Human Capital at Birth (Non-Parametric Case)

Statistic α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

Panel A: Accumulation starts at Age 10

Mean (a) 0.466 0.319 0.209 0.139 0.087
Coef. of Variation (a) 0.601 0.463 0.358 0.243 0.212
Skewness (a) 1.303 1.190 1.183 1.168 1.103
Mean (h1) 69.6 71.4 74.9 76.0 83.5
Coef. of Variation (h1) 0.456 0.453 0.422 0.397 0.261
Skewness (h1) 1.152 1.146 1.151 1.155 1.142
Correlation (a, h1) 0.10 0.205 0.305 0.397 0.418

Panel B: Accumulation starts at Age 20

Mean (a) 0.453 0.320 0.210 0.134 0.089
Coef. of Variation (a) 0.669 0.504 0.365 0.324 0.168
Skewness (a) 1.251 1.188 1.147 1.131 1.111
Mean (h1) 86.8 88.1 93.4 94.5 99.6
Coef. of Variation (h1) 0.475 0.486 0.510 0.457 0.501
Mean (h1) 86.8 88.1 93.4 94.5 99.6
Skewness (h1) 1.148 1.163 1.167 1.135 1.124
Correlation (a, h1) 0.621 0.689 0.781 0.792 0.741

18



Table 5: Ability and Human Capital at Birth (Parametric Case)

Statistic α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

Panel A: Accumulation starts at Age 10

Mean (a) 0.499 0.322 0.207 0.139 0.089
Coef. of Variation (a) 0.514 0.436 0.353 0.235 0.198
Skewness (a) 1.125 1.092 1.061 1.027 1.010
Mean (h1) 64.0 69.2 74.7 75.1 78.6
Coef. of Variation (h1) 0.454 0.453 0.434 0.403 0.184
Skewness (h1) 1.100 1.100 1.090 1.077 1.071
Correlation (a, h1) 0.070 0.145 0.171 0.333 0.351

Panel B: Accumulation starts at Age 20

Mean (a) 0.467 0.321 0.209 0.136 0.088
Coef. of Variation (a) 0.613 0.474 0.347 0.257 0.158
Skewness (a) 1.191 1.109 1.058 1.033 1.012
Mean (h1) 86.7 89.5 92.3 96.6 100.1
Coef. of Variation (h1) 0.427 0.439 0.481 0.468 0.459
Skewness (h1) 1.088 1.092 1.109 1.105 1.100
Correlation (a, h1) 0.600 0.621 0.781 0.792 0.796

Fourth, mean learning ability declines as the curvature parameter α increases,
while the opposite is true for mean initial human capital. To gain intuition, note that
for given learning ability and initial human capital a higher value of α lowers earnings
early in life and raises earnings later in life – in effect rotating individual age-earnings
profiles counter-clockwise. This follows, see Proposition 1, since as α increases time
spent working early in life decreases whereas end of life human capital increases.
Raising mean initial human capital and lowering mean learning ability serves to rotate
the age-earnings profiles clockwise to counteract the effect of increasing α.

5.4 Persistence in Individual Earnings

So far we have looked at how the earnings distribution changes as agents age. How-
ever, it is possible that different theoretical models may all be able to replicate the
patterns of means, dispersion and skewness in US cohort data, but differ in their
implications for earnings persistence. The latter is a topic that has spawned consid-
erable attention in the labor, consumption, and income distribution literatures and
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for which the benchmark model has strong implications. In addition, it is of inde-
pendent interest to investigate the performance of the benchmark model in terms of
a number of facts that we did not force it to match.

We now characterize the extent to which measures of persistence in the model
are consistent or inconsistent with the corresponding measures from US data. We
consider two measures of persistence in cohort data: (1) the correlation of individual
earnings levels across periods and (2) the correlation of individual earnings growth
rates across periods. Table 6 shows the results for various age groups within the
model, when the initial distribution of human capital and ability is selected using the
non-parametric methodology. For ease of exposition, we report results only for the
case when accumulation starts at age 10 and α = 0.7. The findings are that both
earnings levels and growth rates are very highly correlated across model periods.

Table 6: Persistence in Individual Earnings α = 0.7

Statistic Age (j) = 45 Age (j) = 40

Panel A: Correlation - Levels
Correlation(Ej, Ej−1) 0.9999 0.9997
Correlation(Ej, Ej−5) 0.9966 0.9854
Correlation(Ej, Ej−10) 0.9679 0.8671

Panel B: Correlation - Growth Rates
Correlation(zj, zj−1) 0.9995 0.9994
Correlation(zj, zj−5) 0.9960 0.9652
Correlation(zj, zj−10) 0.9750 0.5229

Ej and zj = log(Ej/Ej−1) denote earnings and earnings growth rates, respectively.

We now compare the results in Table 6 with estimates from US data. The corre-
lation of earnings levels has been examined in US data by Parsons (1978) and Hyslop
(2001) among others. They find that earnings among US males are positively corre-
lated for all horizons considered and that the correlation typically falls as the horizon
increases. Hyslop finds that the average correlation is 0.83 for a one year horizon
and 0.59 for a six year horizon. Parsons finds that correlations are typically higher
for older age groups. These results are qualitatively consistent with those from the
human capital model.
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A different picture emerges for the correlation of growth rates. Abowd and Card
(1989) estimate the correlation in earnings growth rates for US males. They find that
the average correlation of earnings growth rates one year apart is negative and equal
to about −0.34, and close to zero when the growth rates are more than one year
apart. Baker (1997) reports similar findings. Storesletten et. al. (2004) report high
but stationary persistence in log-earnings which imply slightly lower negative auto-
correlations of growth rates one year apart. Processes with similar dynamics have also
been estimated by McCurdy (1982) and Hubbard, Skinner and Zeldes (1994). The
results estimated from the data are thus clearly inconsistent with those implied by the
model. These results are suggestive of a key ingredient present in stochastic models
of the earnings distribution, namely, shocks that cause earnings to be mean reverting.
In the conclusion we outline some candidates for shocks that can be incorporated into
human capital theory.

6 Conclusion

We assess the degree to which a widely-used, human-capital model is able to replicate
the age dynamics of the US earnings distribution documented in Figure 1. We find
that the model can account quite well for these age-earnings dynamics. In addition, we
find that the model produces a cross sectional earnings distribution closely resembling
that implied by the age-earnings dynamics documented in Figure 2. Our findings
indicate that differences in learning ability across agents are key. In particular, in
the model high ability agents have more steeply sloped age-earnings profiles than low
ability agents. These differences in earnings profiles in turn produce the increases
in earnings dispersion and skewness with age that are documented in Figures 1 and
2. These findings are robust to the age at which the human capital accumulation
mechanism described by the model begins and to different values of the elasticity
parameter of the human capital production function. We also find that, despite its
relative success in replicating these facts, the model is inconsistent with evidence
related to the persistence of individual earnings.

We mention two areas in which future work seems promising. The first has to
do with the fact that the distribution of agents by initial human capital and ability
is unrestricted by the model. Models of the family can provide restrictions on this
initial distribution. For this class of models, an assessment of the ability to replicate
the facts of age-earnings dynamics and intergenerational earnings correlations is a
natural next step.

The second area for future work deals with the fact that the model examined
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here abstracts from many seemingly important features. Three such features are
the absence of a leisure decision, an occupational choice decision and shocks that
make human capital risky. We comment on this last feature. First, allowing for
risky human capital would be one way of integrating deeper foundations for earnings
risk into the standard consumption-savings problem considered by the literature on
the life-cycle, permanent-income hypothesis. This literature has examined in detail
the determinants of consumption and financial asset holdings over the life cycle, but
no comparable effort has been put into investigating the accumulation of human
capital. Second, while there seems to be agreement that human capital is risky there
is relatively little work that analyzes different sources of risk and then determines their
quantitative importance.23 It is clear from this paper that a richer set of facts is needed
to identify both initial conditions and shocks in a model with risky human capital,
given that human capital theory can explain the patterns in Figure 1 without shocks.
Two interesting questions for a theory with risky human capital are (i) can such a
model account for both the distributional dynamics of earnings and consumption over
the life cycle? and (ii) what fraction of the dispersion in lifetime earnings is accounted
for by initial conditions versus shocks? We plan to explore these questions in future
work.

23Within a human capital model, shocks can no longer be modeled as exogenous shocks to earnings.
Instead, they must be modeled at a deeper level as shocks to the depreciation of human capital, to
learning ability, to the employment match, to rental rates and so on. Each one of these alternatives
poses different modeling as well as empirical challenges.
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A Appendix

A.1 Proposition 1

To prove Proposition 1 it is useful to reformulate the dynamic programming problem
by expressing earnings as a function of future human capital and ability. The resulting
earnings function is denoted G(h, h′, a; j).

Vj(h; a) = max
h′

G(h, h′, a; j) + (1 + r)−1Vj+1(h
′; a)

h′ ∈ Γ(h, a) ≡ [h(1− δ) + f(h, 0, a), h(1− δ) + f(h, 1, a)]

Proof of Proposition 1:

(i) The continuity of the value function follows by repeated application of the
Theorem of the Maximum starting in the last period of life. To apply the Theorem
of the Maximum, we make use of the continuity of G(h, h′, a; j) and the fact that the
constraint set is a continuous and compact-valued correspondence. These are easily
verified. To show that the value function increases in h and a, note that this holds in
the last period since VJ(h; a) = wJh. Backward induction establishes the result for
earlier periods using the fact that G(h, h′, a; j) increases in h and a.

The concavity of the value function in human capital follows from backwards
induction by applying repeatedly the argument used in Stokey and Lucas (1989, Thm.
4.8). To apply this argument, we make use of three properties. First, the graph of the
constraint set {(h, h′) : h ∈ R1

+, h′ ∈ Γ(h, a)} is a convex set for any given ability level
a. This follows from the fact that the human capital production function is concave
in current human capital. Second, G(h, h′, a; j) is jointly concave in (h, h′). This can
be easily verified. Third, the terminal value function VJ+1(h; a) ≡ 0 is concave in
human capital.

The decision rule hj(h; a) is single-valued since the objective function is strictly
concave and the constraint set, for given (h; a), is convex. The objective function
is strictly concave because the value function is concave and because G(h, h′, a; j) is
strictly concave in h′.

(ii) Define Vj(h; a) recursively, given VJ(h; a) = (1 + g)J−1h, as follows:

Vj(h; a) = [(1 + g)j−1
∑J−j

k=0[
(1+g)(1−δ)

(1+r)
]k]h + Cj(a) for h ≥ Aj(a).

Vj(h; a) = 1
(1+r)

Vj+1(h(1− δ) + ahα; a) for h ≤ Aj(a)
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Cj(a) ≡ (1 + r)−1(Cj+1(a) + Dj+1aAj(a)α)− (1 + g)j−1Aj(a), where CJ(a) = 0

Dj ≡ [(1 + g)j−1
∑J−j

k=0[
(1+g)(1−δ)

(1+r)
]k]

Now verify that the functions (Vj(h; a), hj(h; a)) satisfy Bellman’s equation. Ver-
ification amounts to checking that hj(h; a) satisfies Bellman’s equation without the
max operation and that it achieves the maximum in the right-hand-side of Bellman’s
equation. Since the first part is routine, the proof focuses on the second part. A
sufficient condition for an interior solution is given in the first equation below. The
second equation follows from the first after substituting the relevant functions evalu-
ated at h′ = hj(h; a). Here we make use of the assumption on the cutoff values Aj(a)
in Prop 1(ii) since we substitute for V ′

j+1(h
′; a) assuming interior solutions obtain in

future periods. Rearrangement of the second equation implies that Aj(a) is defined
as in Prop 1(ii).

−G2(h, h′, a; j) = (1 + r)−1V ′
j+1(h

′; a)

(1 + g)j−1(1/(aα))Aj(a)1−α =
(1 + g)j

(1 + r)

J−j−1∑

k=0

[
(1 + g)(1− δ)

(1 + r)
]k

It remains to consider the possibility of a corner solution. The first equation below
gives a sufficient condition for a corner solution. The second equation follows from
the first after substitution. Since Vj+1 is concave in human capital, it is clear that
V ′

j+1 is bounded below by the derivative above the cutoff human capital level Aj+1(a).
Thus, from the interior solution case, the second equation holds whenever h ≤ Aj(a).

−G2(h, h′, a; j) ≤ (1 + r)−1V ′
j+1(h

′; a)

(1 + g)j−1(1/(aα))h1−α ≤ 1

(1 + r)
V ′

j+1(hj(h; a); a)

(iii) Focus first on the Lorenz curve for human capital. From Proposition 1(ii)
an individual’s growth rate of human capital decreases as current human capital
increases. Thus, the growth rate of aggregate human capital for agents above the pth
percentile of human capital is no greater than the growth rate of those below the pth
percentile. The height of the period j Lorenz curve at percentile p must be weakly
lower than that of the period j + 1 Lorenz curve. As this holds at all percentiles p,
the claim follows.
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Focus now on the Lorenz curve for earnings. Earnings equal ej = wj(hj−Aj(a)) =
wj(hj−1(1− δ) + aAj−1(a)α−Aj(a)). Differentiate the expression below with respect
to human capital. Note that the growth rate falls as human capital increases and,
thus, as earnings increase. Repeat the argument used for the human capital Lorenz
curve to get that the height of the period j earnings Lorenz curve at percentile p
must be weakly lower than that of the period j + 1 Lorenz curve. As this holds at all
percentiles p, the claim follows.

ej/ej−1 = (wj/wj−1)[(hj−1(1− δ) + aAj−1(a)α − Aj(a))/(hj−1 − Aj−1(a))]

A.2 Computation

We sketch the computation algorithm for the non-parametric case.

Step 1: Calculate the optimal decision rule hj(h; a).

Step 2: Put a grid on learning ability and initial human capital (h, a) and calculate
life-cycle profiles of human capital, hours and earnings from these grid points.

Step 3: Find the initial distribution.

To calculate the optimal decision rule in step 1, for any value of learning ability
a, we put a non-uniform grid on human capital of 300 points on [0, h∗], where the
choice of h∗ may be revised depending on the results of step 3. We calculate the
optimal decision rule for human capital at gridpoints starting from period j = J − 1
by solving the dynamic programming problem starting from period J − 1, given
VJ(h; a) = wJh. Since the value function is concave in human capital each period, the
dynamic programming problem is a concave programming problem. Golden section
search (see Press et al (1992), ch. 10) is used to calculate hj(h; a) at gridoints. To
carry this out, we calculate the value function off gridpoints using linear interpolation.
Backward recursion on Bellman’s equation produces hj(h; a) for j = 1, ..., J − 1.

In step 2 we put a grid of 20 points on [0, a∗] and 20 points on [0, h∗]. This implies
a total of 400 points (h, a). Using the decision rule from step 1, we simulate life-
cycle profiles of labor earnings from any initial pair (h, a). Since decision rules are
computed at gridpoints of human capital holdings, but its values are not restricted to
lie on these gridpoints, we use linear interpolation to calculate values off gridpoints.
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In step 3 we use the Simplex algorithm, as described by Press et al (1992, ch.
10), to find the 400 values of the histogram over [0, h∗] × [0, a∗] that minimizes the
distance between model and data statistics. For any trial of the vector describing the
initial distribution, we calculate the mean, dispersion and skewness statistics at each
age using the calculated life-cycle profiles and the guessed initial distribution. The
calculation of decision rules and the posterior life-cycle simulation are independent
of the initial distribution. This reduces computation time as life-cycle profiles are
calculated only once and stored to be used later in the calculation of the relevant
statistics in all the trials required by the simplex method. If the histogram that best
matches the data puts strictly positive weight on (h, a) pairs where a = a∗ or h = h∗,
then the upper bounds are increased and steps 1-3 are repeated.

A.3 Data

A.3.1 Restricted Time Effects

Below we provide details for implementing the restricted time effects discussed in
section 2.3. Let X = [αs, βj, γt] be the matrix of cohort, age and time dummies with
the number of rows equal to the number of {j, t} pairs available for earnings ej,t,
where for simplicity we omit the dependence on percentile p. Define the unrestricted
regression e = Xb+ ε. Note, here e is the vector of all possible ej,t, and b is the vector
of unrestricted dummy coefficients. The problem is that due to the linear relationship
between time, age, and cohort, the matrix (X ′X)−1 is singular, so this unrestricted
version can not be implemented.

Let ca be the number of age and cohort dummies available, and T be the number
of time dummies available. Define the matrix R and W as indicated below. The
matrix R has two rows corresponding to our two restrictions of setting the mean time
dummies to zero and setting time dummies be orthogonal to trend. Let b∗ be the
corresponding vector of b that obeys this normalization. That is Rb∗ = 02×1. It
turns out that in spite of the fact that (X ′X)−1 is singular the matrix W below is
non-singular.

R =

[
01×ca 11×T

01×ca 1, 2, ...T

]
(1)

W =

[
X ′X −R′

R 02×2

]

Define the vectors V and s as indicated below, where λ is the Lagrange multiplier
on the restricted least square residual (or moment conditions). Then the moment
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conditions corresponding to this minimization is V = Wd. Since W is invertible
we have d = W−1V and therefore have the solution to the desired restricted set of
estimates b∗.

V =

[
X ′e
02×1

]

d =

[
b∗

λ

]
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Figure 1 : Earnings Distribution Dynamics – PSID Data

This figure plots mean, dispersion, and skewness in earnings by age using PSID data. The age-profiles
are based on the percentile estimation procedure described in section 2.2.
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Figure 2 : Earnings Percentiles (0.05 to 0.99) – PSID Data

This figure plots the age percentiles of earnings using the methodology described in section 2.2.
The line corresponding to the p − th percentile shows the level of earnings such that p-percent of
individuals earn below this level at each age. Earnings levels are normalized so that mean earnings
at age 58 are 100. Although Figure 1 is based on 23 percentiles (see text), Figure 2 displays only
the following 8 percentiles (0.05,0.10,0.25,0.50,0.75,0.90,0.95,0.99).
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Figure 3 : Earnings Distribution Dynamics: Alternative Age Effects

This figure plots mean, dispersion, and skewness in earnings by age for PSID data using the estimated
methods described in sections 2.2 and 2.3. Each figure displays three alternative ways to capture age
effects. The line denoted by (−) corresponds to cohort dummies, the line denoted (◦) corresponds to
time dummies, and the line with (?) corresponds to restricted time dummies. Note that the cohort
dummies and restricted dummies are almost indistinguishable.
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Figure 4 : Earnings Distribution Dynamics: Non-Parametric Case

The figures below plot the model implied mean, dispersion, and skewness in earnings by age. All
panels are based on the non-parametric case for the distribution of initial human capital, h1, and
learning ability, a, when the curvature parameter, α, is 0.7. The symbol (−) denotes the data, the
symbol (?) denotes the model when accumulation starts at age 10, (◦) denotes the model when
accumulation starts at age 20.
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Figure 5 : Earnings Distribution Dynamics: Parametric Case

The figures below plot the model implied mean, dispersion, and skewness in earnings by age. All
panels are based on the parametric case (bivariate log-normal) for the distribution of initial human
capital, h1, and learning ability a, when the curvature parameter, α is 0.7. The line (−) denotes the
data, the symbol (?) denotes the model when accumulation starts at age 10, (◦) denotes the model
when accumulation starts at age 20.
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Figure 6 : Earnings Distribution Dynamics: Fixed Initial Human Capital

The figures below plot the model implied mean, dispersion, and skewness in earnings by age. All
panels are based on the non-parametric case for the distribution of learning ability a, and a common
initial human capital level, h1, when the curvature parameter, α, is 0.7. The symbol (−) denotes
the data, the symbol (◦) denotes the model when accumulation starts at age 10.
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