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Abstract

What prevents majorities from extracting surplus from minorities in leg-

islatures? We study an infinite horizon game where a legislative body votes

to determine distributive policy each period. Proposals accepted by a simple

majority are implemented, otherwise the status quo allocation prevails. We

construct a symmetric Markov perfect equilibrium that exhibits compromise

in the following sense: if the initial status quo allocation is “not too unequal”,

then the Markov process is absorbed into allocations in which more than a

minimum winning majority receives a positive share of the social surplus with

positive probability. The compromise is only sustainable if, starting from the

“unequal” allocations, the Markov process is absorbed into allocations in which

there is a complete absence of compromise. The compromise equilibrium exists

when discounting is neither too small nor too large. We find that, contrary

to intuition, the range of discount factors for which this equilibrium exists

increases as the number of legislators increases. In this sense, compromise is

easier in larger legislatures.
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1 Introduction

Many legislatures require the consent of only a simple majority to implement poli-

cies. It follows that when distributive policy is being determined, a simple majority

of legislators can split the entire surplus among themselves. Yet observed outcomes

in which resources are distributed beyond a minimal majority are common. Exam-

ples such as military bases, transportation and agricultural subsidies all share this

property to varying degrees. This paper examines the possibility that compromise

— agreed upon outcomes in which more than a minimum winning majority receives

a positive share of the social surplus — is sustainable in legislatures.

We posit a model of legislative bargaining and construct an equilibrium in which

compromise may occur. In each period, a law is proposed by a randomly selected

legislator and is passed by a majority vote.1 If the current period’s proposal fails

to achieve a majority vote, the previous period’s allocation is implemented. In

this setting, each member of today’s majority is concerned that he might belong to

tomorrow’s minority. With concave preferences, each legislator has an incentive to

smooth his allocation over time, and this motive can lead to an equilibrium in which

compromise occurs.

The setup resembles the legislative process that distributes benefits under many

federal spending programs in the United States. The distribution of benefits is

enacted by the legislature and written into law. This distribution remains effective

until new legislation is passed to alter it. When benefits are distributed by this kind

of process, laws made today can potentially be overturned tomorrow, so legislators

must consider the trade-offs between appropriating political spoils in the short term

or more equitably sharing benefits in the long term.2 In particular, a legislator with

proposal power cannot be certain he will have proposal power in the future and may

prefer to distribute benefits among more legislators than a bare majority, in order

to secure benefits for himself in the future.

We construct a symmetric Markov perfect equilibrium such that if the initial

status quo allocation is not too unequal, the equilibrium Markov process is absorbed

1This stylized legislative process is common in the literature on legislative bargaining. It was
introduced by Baron and Ferejohn (1989) who argue that, with a large number of legislators, each
seeking to put forward his own policy, a legislative process that does not favor a particular legislator
will result in a randomly selected proposer each period.

2We show that this motivation can be present in the absence of other explanations for an even
distribution of benefits such as reputation or institutional effects.
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into a closed class of proposals that exhibit compromise.3 Critically, the compromise

is only sustainable if starting from the remaining unequal allocations, the Markov

process is absorbed into a closed class of proposals in which there is no compromise. If

initial allocations are unevenly distributed, legislators cherry-pick minimum-winning

coalitions and eventually the equilibrium transitions into this class. The sensitivity to

initial conditions suggests that distributive policies that have a balanced allocation

have their origins in conditions that were already somewhat equitable, while the

reverse is true for unevenly distributed policies.

Standard repeated game arguments could also explain compromise in such a set-

ting. If legislators condition on the entire history of play, simple trigger strategies

could yield the compromise we observe, but there are good reasons why trigger strate-

gies would be problematic in our setting. The first is that there is little evidence of

legislators being “punished” in the allocation of benefits through distributive policy,

so trigger strategies do not appear to be the equilibrium strategies being played.4

In addition, most legislatures are characterized by periodic turnover. For example,

the United States House of Representatives consists of 435 members each serving a

two-year term, in Israel there are 120 members of the Knesset each serving 4-year

terms, and the Mexican Chamber of Deputies comprises 500 deputies each serving

three-year terms with no re-election. Even with powerful incumbency advantages,

Matland and Studlar (2004) estimate 10% average annual legislative turnover for 25

countries, or 32% turnover per election. This periodic turnover can result in a lack

of institutional memory.

Given potential memory problems it makes sense to restrict attention to Markov

perfect equilibria, since these are subgame perfect equilibria in which players choose

strategies that require no memory of past play beyond that which is relevant to

today’s payoffs. The Markov assumption does not imply that individual legislators

have no memory. However, equilibrium “memory” captured by a legislature with

turnover can be appropriately modeled as depending only on the current, payoff

relevant information.

In this game the payoff-relevant information, or the state variable, is the status

quo allocation and the current period’s proposer. The stage game is a game of

3 We use the term closed class as defined in Norris (1997). It is similar to the notion of an
absorbing state, but refers to a set of states. Once a state in the closed class has been reached, the
Markov process will not transition to a state outside that class.

4See Krehbiel (1991).
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pure conflict and, since the state variable does not embody any information that is

mutually beneficial to all legislators, they have no reason to be more cooperative

at certain times than others.5 The one shot Nash equilibrium of this game is for

the proposer to offer a minimum winning coalition their status quo allocation, and

extract the remainder of the surplus for himself. The difficulty in finding compromise

in Markov equilibria is the proposer’s natural desire to extract short term gains.

Yet an incentive to overcome this is present in our game, without requiring our

equilibrium to use a punishment scheme. The previous literature has so far been

unable to show this.

To sustain the equilibrium legislators’ discount factors must lie in an intermediate

range, that is, they are required to be neither too patient nor too impatient. To

understand the importance of impatience, suppose legislators discount factors were

very high, and suppose someone deviated from the compromise class. To prevent

such a deviation, the process must spiral towards the no-compromise class. However,

a legislator with a very high discount factor would unilaterally make an offer to return

to the compromise class, that would in turn be accepted, thereby halting the spiral

towards no-compromise.6

We find that as the number of legislators increases, the range of discount factors

that sustains these equilibria increases. Since more legislators means greater un-

certainty over the agenda-setter, continuations that involve no compromise become

less attractive, while compromise continuations become more attractive. This is in

contrast to the conventional wisdom due to Olson (1965) that suggests cooperation

diminishes as group size increases.7

We also find that as the utility function becomes more concave the upper bound

and the lower bound on the range of admissible discount factors both decrease.

5This is in contrast to games that are studied in Battaglini and Coate (2006) where the state
variable is public debt. A high level of public debt is mutually disadvantageous to all legislators.
This echoes a result by Dutta (1995), where he finds that sustaining efficient Markov prefect
equilibria requires some amount of “state symmetry”. This condition is clearly violated in our
model.

6Markov equilibria of the type of game we analyze are notoriously difficult to characterize because
of the infinite multi-dimensional state space. As such, we characterize one equilibrium with the
feature that compromise is a possible outcome, and it obtains when discount factors are within a
certain range. Other equilibria of this model with risk averse legislators have not yet been found
in the current literature, but work has been done by Kalandrakis (2003), (2007) and Duggan and
Kalandrakis (2006) in closely related models. These are discussed at the end of the Introduction.

7Other authors that have also shown a converse result are Pecorino (1999), Haag and Lagunoff
(2007), and Esteban and Ray (2001).
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The intuition is that as concavity increases, the compromise continuation becomes

more attractive, hence less-patient legislators are willing to offer it, but at the same

time, less patience is needed for there to be an incentive to spiral towards the no-

compromise.

The fact that we find equilibria that exhibit compromise when restricted to

Markovian strategies implies that even institutions without a mechanism for con-

veying history can result in a compromise outcome. Additionally, we show that

compromise can be possible in a legislative setting without explicit motives for it,

such as in vote-trading. With distributive policy any outcome that improves the

position of one legislator is at the expense of some other legislator so there is no

incentive to trade votes. The rationale for compromise in our equilibrium is based

on the aversion to the possibility of being disadvantaged in the future. This ra-

tionale sustains compromise without appealing to the possibility of side payments,

as in Merlo (2000), log-rolling, parliamentary procedures or any other features of

legislatures that could have been included in the model.

Our work is related to that of Dixit, Grossman and Gul (2000) who investigate

political compromise based on tacit cooperation in a two-party framework. They con-

sider efficient subgame perfect equilibria for a similar model with only two players

and employ trigger strategies to sustain compromise. They find that the possibil-

ity of compromise between parties diminishes with the length of time any single

party retains power. The model analyzed by Dixit et.al is relevant when considering

compromise between political parties in a two-party system, in contrast we consider

compromise among many competing legislators, each of whom is interested solely in

distribution of benefits towards their district.8 Lagunoff (2001) looks at the question

of civil liberties and the formation of legal standards through majority voting. He

finds that due to imprecise signals and the possibility of making mistakes, in equi-

librium, groups choose standards that are not too severe. This argument parallels

what we find. The lack of severe standards can be viewed as a compromise outcome

and is driven by the noise introduced by imprecise signalling. Similarly in our model,

compromise is driven by the uncertainty over the identity of future agenda-setters.9

Our game closely resembles that analyzed by Kalandrakis (2004) who considers

8We do not factor in ideological bias along party lines when considering payoffs, hence coalitions
form independent of party affiliation. This basis of coalition formation is supported in empirical
work by Lee (2000).

9Battaglini and Coate (2006) also include a bargaining game similar to ours as part of their
model, but the status quo is not endogenous.
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three risk neutral legislators. He finds that equilibrium outcomes are absorbed in a

closed class in which the proposer takes all. Kalandrakis (2007) extends this result

to the case of five or more risk-neutral legislators and with arbitrary recognition

probabilities. He again shows that outcomes are absorbed in the no-compromise

closed class.10 Duggan and Kalandrakis (2006) prove a general existence result for

this class of games, but the result does not extend to equilibria with more than a

minimum winning majority obtaining a positive allocation. The equilibria found in

the papers discussed above result in the proposer being able to extract the entire

surplus. This provides a counterpoint to our paper, as we show that a sharing

outcome is possible in equilibrium.

Earlier work on the dynamics of distributive policy was done by Baron and Fere-

john (1989), Baron (1996) and Gerber and Ortuno-Ortin (1998). Baron and Ferejohn

(1989) was one of the earliest works to look at the dynamics of political compromise.

Baron (1996) and Gerber and Ortuno-Ortin (1998) considered the case of a public

good and a single dimensional policy space. Baron (1996) looked at a dynamic policy

setting game, whereas Gerber and Ortuno-Ortin (1998) looked at a static game and

considered the endogenous formation of coalitions. Both these papers obtained a

version of the Median Voter Theorem, with some form of compromise occurring in

equilibrium, but these are not games of direct conflict.

This paper adds to a growing literature emphasizing the constraints on proposal

making power in dynamic distributive policy (Fong (2006), Battaglini and Palfrey

(2007), Diermeier and Fong (2007)). Notably, Diermeier and Fong (2007) investigate

endogenous limits on proposal power. They show that in an institutional setting in

which one legislator is always the proposer and can make repeated proposals, the

other legislators have an incentive to reject proposals allocating a zero share to

other non-proposing legislators, hence reducing the ability of the proposer to extract

the entire surplus. This is complimentary to the result in our equilibrium starting

from the “well distributed” status quo allocations. We also show that starting from

“uneven” status quo allocations the proposal power is essentially unconstrained as in

10Kalandrakis (2007) also shows that with equal recognition probabilities, and for a subset of
state variables where a half or more legislators have a zero status quo allocation, the equilibrium
strategies for the linear utility game satisfy incentive constraints for utility functions that exhibit
some concavity. He provides sufficient conditions on the utility functions to ensure this incentive
compatibility. The equilibrium we construct is complementary in the sense that we have similar
strategies leading to the no-compromise class for the same set of state variables. The derived
restrictions on concavity in Kalandrakis (2007) are satisfied by a more restrictive concavity condition
that we assume.

5



earlier models. We show this in an environment where proposal power is randomly

allocated to each legislator in each period thereby reducing the incentive to “protect”

other non-proposing legislators’ rights.

The remainder of the paper is organized as follows. In Section 2 we present the

general model with n + 1 legislators. In Section 3 we give a brief illustration of the

equilibrium we characterize, and some intuition for the strategies. In Section 4 we

formally characterize the equilibrium. Section 5 provides some comparative statics

results and Section 6 concludes.

2 The Model

We present here a stylized version of the legislative process. Let I = {1, . . . , n + 1}
be a set of n + 1 symmetric legislators, where n ≥ 6 and n even.11 They play a

policy setting game over an infinite number of periods t = 1, 2, . . .. Each period a

surplus of unit size is divided among the n+ 1 legislators’ districts, and each split of

the surplus is an element of the n-dimensional simplex, ∆n. Let the vector st ∈ ∆n

denote the division of the surplus in period t, where st = (st1, s
t
2, . . . , s

t
n+1) and sti is

the share to legislator i’s district. Legislator i is concerned only about the welfare

of his district. The payoff to legislator i in period t, is given by u(sti), where u(·)
is increasing and strictly concave allowing for inter-temporal gains from smoothing.

All legislators discount the future with a common discount factor, δ, and legislator

i seeks to maximize average expected lifetime utility for his own district,12

E

[
∞∑
t=1

δt−1(1− δ)u(sti)

]
.

At the beginning of each period a legislator, xt ∈ I, is randomly recognized

to make a proposal for the division of the surplus for that period. Legislators are

recognized with equal probability in each period. This proposer selection process was

first motivated by Baron and Ferejohn (1989) as discussed in the introduction. The

recognized legislator, xt, then makes a proposal, p ∈ ∆n, which is voted on by all

11In many legislatures district representation is allocated by population size hence the assumption
of symmetry seems appropriate.

12The discount factor can be thought of as not only the usual discounting of future payoffs, but
also including some small probability of leaving office.
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legislators, each legislator having a single vote. A simple majority of votes is required

for a proposal to be implemented, hence the proposer requires n
2

legislators besides

himself to be in agreement. If the proposal fails to achieve n
2

other legislators’ vote,

the status quo allocation, st−1, prevails. The persistence of the status quo allocation

reflects the fact that the allocation schemes of the policies we consider remain intact

if no new legislation is passed to alter it.

We ask whether or not the physical payoff-relevant information is enough to

allow coordination on an equitable outcome as is reflected in the data. As argued in

the introduction, legislatures that are characterized by a large number of members

with periodic turnover may embody little institutional memory. We therefore focus

on the class of subgame perfect equilibria consisting of Markovian strategies, i.e.

Markov perfect equilibria. Before formally defining our notion of a Markov perfect

equilibrium it is useful to give a brief description of the equilibrium strategies we

characterize. We do this in the next section, and then formally characterize the

equilibrium.

3 Equilibrium Illustration

Following Kalandrakis (2007), let ∆θ, θ = 0, . . . , n be a collection of subsets of ∆n

such that a number, θ, of the legislators receive zero allocation. That is

∆θ ≡
{
st−1 ∈ ∆n : |{i : st−1

i = 0}| = θ
}

For example, letting P denote the set of all permutations, Φ, of a vector, we have

∆n = P(1, 0, . . . , 0︸ ︷︷ ︸
n

).

The set ∆n is the set of proposals in which one legislator receives the entire share,

hence we will call ∆n our no-compromise class. Define also the set ∆1 where one

legislator receives zero, and the remaining legislators receive an equal share. That is,

∆1 ≡ P( 1
n
, . . . , 1

n
, 0). We refer to the set ∆1 as our compromise class of proposals.

Note that ∆1 ⊂ ∆1.

The model is specified for seven or more legislators, but we can illustrate the

essential elements of the equilibrium for the three-legislator case. The equilibrium

strategies are inconsistent with this case, but the intuition for the results remain
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intact. 13 With three legislators, all policy proposals lie in the two dimensional

simplex. The set of proposals where a single legislator receives a zero share and the

remaining legislators split the surplus evenly are the points that lie half-way along

each face of the simplex as illustrated in simplex on the left in Figure 1. Using the

the n = 6 case as an example of the true equilibrium, this represents the compromise

class P
(

1
6
, . . . , 1

6
, 0
)
. The vertices of the simplex on the right in Figure 1, illustrate

the no-compromise class, or all allocations in P (1, 0, . . . , 0).

1

23

1

23

Figure 1: Closed Classes

The main proposition of the paper states that we characterize a symmetric

Markov perfect equilibrium, MPE, in which the compromise class is reached in equi-

librium. Clearly the set ∆1 is not the most obvious compromise class to sustain in

equilibrium, the obvious one being perfect sharing or
(

1
n+1

, . . . , 1
n+1

)
. We find that

this class cannot be sustained as an equilibrium with the strategies specified because

there needs to be some asymmetry in payoffs within the compromise class. This is to

allow a modest punishment if there is a deviation from the compromise to allocations

that lead back to compromise. We will discuss in section 4.3 how the equilibrium

extends to other compromise classes that display some asymmetry.

The equilibrium we characterize is subject to initial conditions. If initial allo-

cations are “well distributed” among non-proposing legislators, the proposer finds

the compromise proposal to be most attractive in equilibrium. What we mean by

“well distributed” will be made precise in the characterization below. If the initial

allocations are closer to the vertices, the no-compromise becomes more attractive.

Assuming legislator 1 is the proposer, the allocations that lead to the compromise

class lie within the boundary illustrated by the shaded area in Figure 2.

13One reason the prescribed strategies are not an equilibrium in the case of three legislators is
that the compromise, generally speaking, involves one legislator receiving zero and the remaining
legislators splitting the surplus evenly. In the case of three legislators, this proposal takes the form
( 1
2 ,

1
2 , 0). However a cherry-picking proposal which can lead to the no-compromise, also takes this

form in the case of three legislators, hence the strategies are inconsistent.
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1

23

G1

Figure 2: Equilibrium Illustration

Impatient legislators whose smoothing incentives are not too extreme always have

an incentive to capture as much of the surplus as possible for their district at the

expense of the other legislative districts. This is reflected in the equilibrium strate-

gies. Consider allocations that are not on the face of the simplex. We will call these

interior allocations and their defining characteristic is that the proposing legislator

cannot identify n
2

non-proposing legislators with a zero status quo allocation.14 With

the n = 6 case this corresponds to allocations where at least 5 legislators have a pos-

itive share, and if the proposer has a zero status quo allocation, at least 4 legislators

can have a positive share and it is still considered interior.

Now consider interior allocations that are outside the shaded area. Under the

equilibrium strategies a proposing legislator identifies a minimum winning coalition

of legislators that demand the least, and includes them in a coalition by offering

them just enough to make them indifferent between the status quo allocation and

the current proposal. In the n = 6 case, the coalition consists of at least 3 other

legislators in addition to the proposer. These legislators will be “cherry-picked” to

form a minimum winning coalition and the other three legislators will be frozen out

and given no allocation. In the very next period if the proposing legislator was one of

those in the original coalition, hence has a positive status quo allocation, he has the

opportunity to extract the entire surplus. This leads to a sustained no-compromise

outcome where each legislator grabs the entire surplus when he is the proposer. If the

proposer in this period has a zero status quo allocation (hence was not in the original

coalition), he will cherry-pick the other two legislators who were frozen out, and one

member of the original coalition who now has a positive status quo allocation. In

the next period the no-compromise class is reached.

14Notice that by this definition if the proposer has a zero status quo, and n
2 − 1 other legislators

have a zero status quo, this is also an interior allocation.
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Notice from the above discussion that a legislator with a zero status quo allocation

will strictly prefer receiving zero when the proposal is in P(1, 0, . . . , 0), to receiving

zero when the proposal is in P(s1, . . . , sn
2

+1, 0, . . . , 0). This is because under both

proposals the current period payoff is 0, but under the first proposal if he becomes

the proposer in the next period he receives a payoff of 1, whereas under the second

proposal if he becomes the proposer in the second period he must share the surplus

with at least one other legislator.

What prevents the spiral towards no-compromise from happening in the shaded

region? These allocations are well-distributed making the demands of the minimum

winning coalition relatively high, so the proposer makes an offer to split the sur-

plus between himself and one other legislator, knowing that in the next period the

proposer will have an incentive to sustain this sharing. Once legislators have the

expectation that sharing will occur, it is too costly to buy them off with a cherry-

picking proposal, so the compromise is maintained. In the next sections we formalize

this intuition.

4 Markov Perfect Equilibrium

With Markov perfect equilibria players’ strategies condition only on information that

is relevant to current period payoffs. The payoff relevant variables in this model are

the status quo allocation and the identity of the proposing legislator, (st−1, xt) ∈ ∆n×
I. A complete history of the state is therefore defined as ht = (s0, x1, . . . , st−1, xt).

Each legislator’s strategy is a pair (αi, σi) such that αi is legislator i’s acceptance

strategy and σi is legislator i’s mixed proposal strategy. A mixed proposal strategy

for legislator i, is a probability function σi(·;ht). Given a history of the state ht and

a proposal p, σi(p;ht) will be the probability legislator i assigns to proposal p. An

acceptance strategy for legislator i is a binary function αi(·;ht) such that

αi(p;ht) =

{
1 if legislator i accepts proposal p,

0 if legislator i rejects proposal p.

A strategy profile is given by (α, σ) where α is a vector of acceptance strategies for

all legislators, and σ is a vector of proposal strategies. Note that these acceptance and

proposal strategies can potentially condition on the entire history of the state, ht. We

restrict our attention to Markovian strategies for the reasons explain before hence we
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consider only proposal and acceptance strategies that condition on (st−1, xt). That

is, we focus on a strategy pair [αi(·; st−1, xt), σi(·; st−1, xt)].15

We seek a notion of symmetry for the legislators’ strategies reflecting the fact

that any legislator i will be expected to behave in the same manner as legislator j

if he was in legislator j’s position. More concretely, define the one-to-one operator,

Φ : I → I that represents any permutation of the identity of the legislators. Given

a proposal vector, p = (p1, . . . , pn+1), and permutation Φ(·), we denote the resulting

permuted proposal as pΦ = (pΦ(1), . . . , pΦ(n+1)). A permutation of the state variable

(st−1, xt) is therefore denoted (st−1
Φ ,Φ(xt)), and a symmetric strategy profile is given

by the following definition.

Definition 1. A strategy profile (α, σ) is symmetric if for any permutation of the

identities of legislators, Φ,

αi(p; st−1, xt) = αΦ(i)(pΦ; st−1
Φ ,Φ(xt)), and

σi(p; st−1, xt) = σΦ(i)(pΦ; st−1
Φ ,Φ(xt)).

Given a proposal, p, and an acceptance strategy profile α the law of motion for

the period’s allocation is given by

st =

 p if
∑
i 6=xt

αi(p; st−1, xt) ≥ n
2
,

st−1 otherwise.

This simply says that if the proposal receives the required majority of votes it is

implemented, otherwise the policy reverts to the status quo. The expected dynamic

payoff for any legislator i, given a strategy profile, (α, σ), and a state (st−1, xt),

Vi(α, σ; st−1, xt) is therefore

Vi(α, σ; st−1, xt) =

∫
∆n

{
(1− δ)u(sti) + δExt+1 [Vi(α, σ; st, xt+1)]

}
σxt [p; st−1, xt]dp.

A Markov perfect equilibrium strategy profile must maximize this dynamic payoff

15Although we restrict attention to Markov strategies as our equilibrium concept, in Defini-
tion 2 below we ensure that equilibrium strategies are robust to any history contingent strategy,
[αi(·;ht), σi(·;ht)] .
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for all legislators, for all possible states and must be a best response among any

history contingent strategy. This leads to Definition 2.16

Definition 2. A symmetric Markov Perfect Equilibrium (MPE) is a symmetric strat-

egy profile, (α∗, σ∗), such that for all (st−1, xt) ∈ ∆n × I, for all [αi(·;ht), σi(·;ht)],
for all ht, and for all i,

Vi(α
∗, σ∗; st−1, xt) ≥ Vi(αi(·;ht), α∗−i, σi(·;ht), σ∗−i; st−1, xt).

We seek to identify a symmetric MPE in which more than a minimum winning

majority of legislators receive a positive allocation in each period. We define a

compromise outcome as one is which this occurs. Formally

Definition 3. An allocation, st, exhibits compromise if |{i : sti > 0}| > n
2

+ 1.

Notice that our compromise class, ∆1, satisfies this definition. To ensure that

when incentives to maintain compromise do not hold, there is an incentive to cherry-

pick a minimum winning coalition before obtaining the no-compromise class we have

assumption 1 that essentially says that the utility function is not too concave.

Assumption 1. The utility function u(·) satisfies the concavity restriction

n+ 1− δ
n+ 1− δn

u(st−1
i ) ≤ u(2st−1

i ).

The main proposition of the paper is proposition 1. It states that given assump-

tion 1, an MPE exists in which starting from some initial allocations, a compromise

allocation is implemented from the first period onward. This is true as long as dis-

count factors lie within an intermediate range. In the statement of the proposition,

and in the equilibrium characterization the set ∆θ<β indicates the union of all sets

∪β−1
θ=0 ∆θ and, similarly the set ∆θ≤β indicates the union of all sets ∪βθ=0∆θ .

Proposition 1. There exists a non-degenerate interval [δ, δ], and a set of allocations,

Γi ⊂ ∆θ<n
2

for every i ∈ I, such that if u(·) satisfies assumption 1, then for every

16In the case of two legislators it is easy to see that there is no payoff relevant state. Since there
are only two legislators, the proposer is automatically a majority, hence, effectively a dictator.
There is no inter-temporal decision so the unique solution to the single period maximization results
in the proposing legislator extracting the entire surplus. This is in contrast to the results of Dixit
et al. (2000).
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δ ∈ [δ, δ] a symmetric MPE exists where if (s0, x1) ∈ ∪i(Γi × {i}) then (st−1, xt) ∈
∆1 × I for all t ≥ 1.

The proof is constructive. We characterize the equilibrium in the next section.

4.1 Equilibrium Characterization

Given an allocation st = (st1, . . . , s
t
n+1) and strategies (α, σ) define the dynamic payoff

to player i as

Ui(s
t;α, σ) = (1− δ)u(sti) + δExt+1 [Vi(α, σ; st, xt+1)]

The equilibrium acceptance strategy for any legislator i is α∗i such that he accepts

proposals that give a dynamic payoff that is at least as great as the payoff to the

status quo. That is, given proposal p,

α∗i (p; st−1, xt) =

{
1 if Ui(p;α∗, σ∗) ≥ Ui(s

t−1;α∗;σ∗)

0 otherwise.

Under the equilibrium proposal strategies, σ∗(·; st−1, xt), if more than n
2

non-

proposing legislators have a zero status quo allocation, the proposing legislator will

extract the entire surplus and offer a no-compromise proposal. If less than n
2

non-

proposing legislators have a zero status quo allocation, and the status quo is not one

of the compromise allocations, (what we call interior allocations), the proposer will

either offer a compromise proposal or extract as much surplus as possible by using

a cherry-picking strategy. Once a compromise proposal has been implemented, the

compromise is sustained. We will consider proposal strategies for specific status quo

allocations.

4.1.1 Status Quo Allocations in the No-Compromise and Compromise

Classes

First consider all (st−1, xt), such that st−1 ∈ ∆n. These are status quo allocations in

the no-compromise class. The equilibrium proposal strategy is to assign probability

one to the no-compromise proposal, p, where

p
i

=

{
1 for i = xt

0 for i 6= xt .

13



Notice that this proposal is also an element of the set ∆n this means that the no-

compromise class, ∆n, represents a closed class of proposals. Now consider st−1 ∈
∆θ>n

2
, or st−1 ∈ ∆n

2
and st−1

xt 6= 0. These are allocations where more than n
2

non-

proposing legislators have a zero status quo allocation. The equilibrium proposal is

again the no-compromise proposal with probability 1, so σ∗i (p; st−1, xt−1) = 1.

Given these equilibrium strategies we can write down the dynamic payoff to the

no-compromise proposal, p, which is

Ui(p;α∗, σ∗) =

{
(1− δ)u(1) + δExt+1 [Vi(α

∗, σ∗; p, xt+1)] if i = xt,

(1− δ)u(0) + δExt+1 [Vi(α
∗, σ∗; p, xt+1)] if i 6= xt.

In the next period, since the status quo is an element of the no-compromise

class, the equilibrium strategy is the no-compromise proposal again so we can define

the recursive payoffs when the status quo is in the no compromise class as V x for

the proposer and V z for everyone else. With probability 1
n+1

each legislator is the

proposer in the next period, hence any legislator’s continuation value is V x with

probability 1
n+1

and V z with probability n
n+1

. This gives

V x = (1− δ)u(1) + δ
n+1

(V x + nV z) ,

V z = (1− δ)u(0) + δ
n+1

(V x + nV z) .

Normalizing u(0) = 0 and u(1) = 1, and solving gives

V x = n+1−δn
n+1

(1)

and

V z = δ
n+1

. (2)

Now consider all (st−1, xt), such that st−1 ∈ ∆1. These are status quo allocations

in the compromise class. Define the compromise proposal generally as, pj, such that

legislator j receives zero and the remaining legislators split the surplus evenly. So

pji =

{
0 if i = j,
1
n

otherwise.

14



If st−1 ∈ ∆1 and st−1
xt = 1

n
then one legislator (excluding the proposer) has a zero

status quo allocation and the remaining n legislators split the surplus evenly. The

equilibrium strategy assigns probability 1 to the compromise proposal pj, for j such

that st−1
j = 0. So the legislator that had a zero status quo allocation is given zero

again and all other legislators split the surplus evenly.

If st−1 ∈ ∆1 and st−1
xt = 0, so the proposer’s status quo allocation is zero, the

proposer takes a legislator at random to give no allocation and splits the surplus

evenly among himself and the remaining legislators. So σ∗i (p
j; st−1, xt) = 1

n
for all

j ∈ I/{xt}. Notice again that once a proposal in the compromise class, ∆1, has been

implemented the equilibrium strategies dictate that all subsequent proposals lie in

this set. Hence the set of proposals ∆1 represents a closed class of proposals. The

dynamic payoff to the compromise proposal, pj, is therefore

Ui(p
j;α∗, σ∗) =

{
(1− δ)u( 1

n
) + δExt+1 [Vi(α

∗, σ∗; pj, xt+1)] if i 6= j,

(1− δ)u(0) + δExt+1 [Vi(α
∗, σ∗; pj, xt+1)] if i = j.

If the status quo is an element of the compromise class, the equilibrium strategy

is the compromise proposal again, so we can define the recursive payoff when the

status quo is in the compromise class as γ for the legislators receiving 1
n

and ζ for

the legislator that is frozen out. With probability n
n+1

each legislator receives the

same payoff as he did in the previous period, and with probability 1
n+1

the current

loser becomes the proposer, and a new legislator is randomly selected to be frozen

out. These payoffs are given by

γ = (1− δ)u( 1
n
) + δ

n+1

(
nγ + [ 1

n
ζ + n−1

n
γ]
)
,

ζ = (1− δ)u(0) + δ
n+1

(γ + nζ) .

Solving for ζ and γ gives

γ = n(n+1−δn)
(n+1)(n+δ−δn)

u( 1
n
), (3)

ζ = nδ
(n+1)(n+δ−δn)

u( 1
n
) . (4)

Although equilibrium strategies are not fully specified, it is possible at this point
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to explain why a legislator does not deviate from the compromise and cherry-pick
n
2

legislators to form a minimum winning coalition. This is what defines the lower

bound on the discount factor as is explained in the next section.

Definition of δ. Consider a deviation from the compromise class in which the

proposing legislator employs a cherry-picking strategy. He will attempt to buy-off

a minimum winning coalition and extract the remainder of the surplus for himself.

The coalition in this case will consist of the legislator who was receiving zero under

the status quo and n
2
− 1 randomly selected legislators who were each receiving 1

n
.

The legislator who is receiving zero, will accept zero because V z ≥ ζ.

The remaining n
2
− 1 legislators are receiving a dynamic payoff of γ under the

status quo, and the proposer is also receiving γ under the status quo. Hence the

best the proposer will be able to do under a deviation is offer an equal amount to

himself and the coalition members which results in a stage payoff of u
(

2
n

)
. Since the

deviation proposal is in the set ∆n
2
<θ≤n the continuation strategies dictate proceeding

to the no-compromise class and obtaining a continuation payoff of δ
n+1

. Hence this

deviation is profitable if and only if γ < (1 − δ)u
(

2
n

)
+ δ

n+1
. Conversely such a

deviation is prevented if and only if

γ ≥ (1− δ)u
(

2

n

)
+

δ

n+ 1
. (5)

As δ → 0 this inequality becomes u
(

1
n

)
≥ u

(
2
n

)
which is a contradiction, so the

proposer would want to propose this, but as δ → 1 this becomes nu
(

1
n

)
≥ 1, which

holds by concavity of u(·). Hence the proposer does not want to propose such a

deviation as long as legislators are patient enough. So there is a lower bound on the

discount factor, δ, such that for all δ > δ the inequality in (5) is satisfied. Lemma 5

in the appendix shows that δ does not contradict the restriction on concavity.

4.1.2 Interior Status-Quo Allocations

Now consider st−1 ∈ ∆n
2

with st−1
xt = 0. This is considered an interior allocation.

As Kalandrakis (2007) notes, it is not necessarily an equilibrium strategy to offer

a positive allocation to the legislator with the lowest positive status quo allocation,

while freezing out the others. This is because if a single legislator receives a positive

allocation in the next period with probability one, his continuation payoff may be so

large that his dynamic payoff exceeds the dynamic payoff of other legislators with
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higher status quo allocations. The proposer in this case could do better by offering

the legislator with the higher status quo allocation an amount that would make him

indifferent between his status quo and the low continuation payoff. In equilibrium a

cherry-picking strategy is used where, with some probability, a share A(b∗) is offered

to one of b∗ legislators. Following Kalandrakis (2007) and without loss of generality

suppose st−1 = (st−1
1 , . . . , st−1

n
2

+1, 0, . . . , 0) with 0 < st−1
i ≤ st−1

i+1 and st−1
xt = 0. Given a

value b ∈ {1, . . . , n
2

+ 1}, define the allocation

A(b) = u−1

[∑b
i=1 u(st−1

i )

b− δn
2(n+1)

]
. (6)

This is the value that is demanded by one of b legislators in equilibrium. Define the

value b∗ as17

b∗ =

{
min b ∈ {1, . . . , n

2
} s.t. A(b) ≤ A(b+ 1),

n
2

+ 1 otherwise.

Now define the cherry-picking proposal, pj(A(b∗)), where legislator j receives A(b∗),

the proposer receives 1− A(b∗), and all other legislators receive zero. So

pji (A(b∗)) =


A(b∗) for i = j,

1− A(b∗) for i = xt,

0 otherwise.

The equilibrium proposal strategy is to assign probability µj(b
∗) to the cherry-

picking proposal pj(A(b∗)) for all j ≤ b∗, where µj(b
∗) is given by

µj(b
∗) =

u(A(b∗))− u(st−1
j )

u(A(b∗)) δn
2(n+1)

. (7)

The intuition is that for any allocation in ∆n
2
, it is a best response for a proposer

with a zero status quo allocation to randomize over legislators in such a way that

their dynamic payoffs are lower than the next highest status quo allocation legislator.

This ensures there is no incentive to deviate to offering any other legislator a positive

share.

Now consider the dynamic payoff to the cherry-picking proposal pj(A(b∗)). This

proposal is an element of the set ∆n−1 so the equilibrium continuation strategies

17Kalandrakis (2007) shows that b∗ is unique.
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dictate that the no-compromise proposal, p, is implemented. The continuation pay-

offs are therefore V x if legislator i is the proposer and V z otherwise. Hence we can

simplify these dynamic payoffs as

Ui(p
j(A(b∗));α∗, σ∗)) =


(1− δ)u(1− A(b∗)) + δ

n+1
if i = xt,

(1− δ)u(A(b∗)) + δ
n+1

if i = j,
δ

n+1
otherwise.

The probability assigned to legislator i ≤ b∗ being allocated a positive share is µi,

so define the expected dynamic payoffs to the cherry-picking strategy σ∗i (p
j(A(b∗)); st−1, xt)

as Vi(∆n
2
; st−1
xt = 0). These are given by

Vi(∆n
2
; st−1
xt = 0) =


(1− δ)u (1− A(b∗)) + δ

n+1
if i = xt

(1− δ)u (A(b∗))µi + δ
n+1

if i ≤ b∗,
δ

n+1
otherwise.

(8)

Given that legislators have concave stage utilities, it seems possible that there

would be an incentive for the proposer to deviate to the compromise proposal rather

than offering the cherry-picking strategy that leads to a very uncertain payoff. Hence

legislators need to be impatient enough to avoid such a deviation. The next section

defines the first upper bound on the discount factor that prevents such a deviation.

Definition of δ1. The first upper bound ensures that once a cherry-picking al-

location has been implemented, legislators no longer have an incentive to propose

the compromise. Consider a status quo in ∆n
2

when the proposer has a zero status

quo allocation. Equilibrium strategies dictate proposing a cherry-picking alloca-

tion such that one legislator receives A(b∗) and the proposer receives 1 − A(b∗).

The dynamic payoff for the proposer under the equilibrium strategy is therefore

(1− δ)u(1− A(b∗)) + δ
n+1

since continuation strategies dictate remaining in the no-

compromise class. First, for the proposer to choose this allocation over the allocation

A(b∗) for himself and 1−A(b∗) to the coalition member, it must be that 1
2
≤ 1−A(b∗).

This holds by the restriction on concavity. 18 Now consider a deviation where the

proposer proposes a compromise allocation, pj. From equation (3) the payoff from

such a deviation is γ. To show that this is not a profitable deviation it suffices to

show that

18See Appendix section 7.7.2.
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γ ≤ (1− δ)u
(

1

2

)
+

δ

n+ 1
(1− δ) ≤ u(1− A(b∗)) +

δ

n+ 1

As δ → 0 this becomes u
(

1
n

)
≤ u

(
1
2

)
, which clearly holds, but as δ → 1 this

becomes nu
(

1
n

)
≤ 1

n+1
, which is a contradiction. Hence this inequality represents

an upper bound on the discount factor, which we will call δ1. Lemma 1 ensures that

there is a non-degenerate range between δ and δ1.

Lemma 1. There exists a non-degenerate interval [δ, δ1].

Proof. Notice that δ and δ1 together imply (1− δ)u
(

2
n

)
+ δ

n+1
≤ γ ≤ (1− δ)u

(
1
2

)
+

δ
n+1

. Since 4 < n there must be a non-degenerate range of δ over which these two

conditions hold. �

Now consider st−1 ∈ ∆θ<n
2
\∆1. This is the remainder of the interior allocations.

Let Cj be the set of legislators that are a part of legislator j’s coalition. Note that

that |Cj| = n
2
. Define the vector of demands for legislator j’s coalition member’s

as A∗j = (A∗j1 , . . . , A
∗j
n
2

), where 0 ≤ A∗ji ≤ 1. This is the set of allocations that

makes each of legislator j’s coalition members at least indifferent between the current

proposal and the status quo, given that legislator j is the proposer. Given a proposer

j and demands A∗j the implemented proposal is either a cherry picking proposal,

p(A∗j), or the compromise proposal. In this case the proposal p(A∗j) is given by

pi(A
∗j) =


A∗ji for i ∈ Cj
1−

∑
i∈Cj A

∗j
i for i = xt

0 otherwise .

Notice that the cherry-picking proposals previously defined are a special case of

the cherry-picking proposal, p(A∗j). Generally p(A∗j) is in the set ∆θ≥n
2
. If it is

an element of ∆n
2

the equilibrium continuation strategies will be the no-compromise

proposal, p, if the period t + 1 proposer has a positive status quo allocation. If the

period t + 1 proposer has a zero status quo allocation the continuation payoffs are

given by Vi(∆n
2
; st−1
xt = 0), so the expected continuation payoffs for the cherry-picking

proposal, p(A∗j), are given by

Vi(A
∗j) =

{
1

n+1
(V x + n

2
V z + n

2
Vi(∆n

2
; st−1
xt = 0)) for pi(A

∗j) > 0,
1

n+1
((n

2
+ 1)V z + n

2
Vi(∆n

2
; st−1
xt = 0)) for pi(A

∗j) = 0.
(9)
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Below I remove the conditioning on (α∗, σ∗) to conserve space. So the dynamic

payoffs to the cherry-picking proposal are

Ui(p(A∗j)) =


(1− δ)u(A∗ji ) + δVi(A

∗j) if i ∈ Cj,
(1− δ)u(1−

∑
i∈Cj A

∗j
i ) + δVi(A

∗j) if i = j

δVi(A
∗j) otherwise.

Denote the set of all permutations of cherry-picking proposals where legislator j is

the proposer, given a vector of demands, A∗j, as P(A∗j). The equilibrium strategy is

a probability distribution µ∗j(·) over all p(A∗j) ∈ P(A∗j), and over all compromise

proposals pi ∈ ∆1. The intuition for the probability distribution over cherry-picking

proposals here is the same as before. If legislators with the lowest status quo allo-

cations are in the coalition with probability one, in some cases their dynamic payoff

exceeds the dynamic payoff to legislators who have higher status quo allocations,

hence the proposer would have an incentive to deviate to having these legislators in

the coalition. To avoid such a deviation, the equilibrium strategies are a probability

distribution over members of the coalition.

Given a status quo allocation, st−1 = (st−1
1 , . . . , st−1

n+1), the vectors A∗j and the

distributions µ∗j(·) are determined by the fixed point of a map, B, that is discussed

in the following section.

4.2 Derivation of µ∗j(·) and A∗j

Denote an arbitrary cherry-picking proposal by legislator j as p(Aj), and, as before,

let the set P(Aj) be all permutations of this cherry-picking proposal, given demands

Aj. Now denote for legislator j an arbitrary probability distribution over cherry-

picking proposals in P(Aj) and over all compromise proposals pi as µj(·), and let

µ = (µ1(·), . . . , µn+1(·)). Finally, denote the matrix of demands for legislators j =

1, . . . , n+ 1 as A = (A1, . . . , An+1).

Let Vi(A, µ) be the expected continuation payoff for legislator i given demands,

A, and probability distributions, µ. This is

Vi(A, µ) =
1

n+ 1

n+1∑
j=1

 ∑
p(Aj)∈P(Aj)

Ui(p(Aj))µj(p(Aj)) + γ
∑

h∈I/{i}

µj(ph) + ζµj(pi)

 .
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Hence given a status quo, an arbitrary vector of demands, and probability distribu-

tions, the dynamic payoff to the status quo is

Ui(s
t−1; A, µ) = (1− δ)u(st−1

i ) + δVi(A, µ). (10)

Assume pi(A
j) > 0, then calculate for all i and all j the value Âji (s

t−1; A, µ) as

Âji (s
t−1; A, µ) = u−1

[
min{max{0, 1

1− δ
(
Ui(s

t−1; A, µ)− δVi(Aj)
)
}, 1}

]
.

Define a vector of these values as Âj(st−1; A, µ). Last define the set of all distributions

over cherry-picking proposals in P(Aj) and all compromise proposals as M(P(Aj)).

Now let us pick new demands and distributions, (Aj′, µj′) ∈ Bj(A, µ; st−1) where

Bj(A, µ; st−1) = {(Aj′, µj′) :

(Aj′, µ̂j′) ∈ arg maxÂj ,µ̂j Uj(s
t−1; Âj, A−j, µ̂j, µ−j)

s.t. Âj = Âj(st−1; A, µ̂j, µ−j)

µ̂j ∈M(P(Aj))

and µj′(p(Aj′)) = µ̂j′(p(Aj))}.

Define

B(A, µ; st−1) = ×n+1
j=1 Bj(A, µ; st−1).

Lemma 2. The map B(A, µ; st−1) has a fixed point (A∗, µ∗) such that (A∗, µ∗) ∈
B(A∗, µ∗; st−1).

Proof. See Appendix. �

We can now formally define the set Γj to be the set of status quo allocations

where less than n
2

legislators have a zero allocation, and from which legislator j will

choose to go to compromise. This will be where µ∗j(pi) = 1 for some i. So
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Γj =
{
st−1 ∈ ∆θ<n

2
: µ∗j(pi) = 1 for some i

}
.

Now define the set Γ to be the set of all status quo allocations for which there is

some positive probability that some legislator j will choose compromise. That is

Γ =
{
st−1 ∈ ∆θ<n

2
: µ∗j(pi) > 0 for some i, for some j

}
.

Note that Γj ⊂ Γ. Last define all other allocations in ∆θ<n
2

excluding the compromise

class to be ∆c
θ<n

2
. This is

∆c
θ<n

2
= ∆θ<n

2
/(Γ ∪∆1).

We can now provide an illustration of the equilibrium dynamics which will help

to give some intuition for the second upper bound on the discount factor. This is

given in figure 3 below.

1Δ

nθn <<Δ
2

nΔ2
nθ=Δ

c
θ n

2<
Δ

Γ

Figure 3: Equilibrium Dynamics

Definition of δ2. The second upper bound on the discount factor δ2 prevents a

deviation from the compromise class into the set Γj. For the three-legislator case

the set Γ1 is illustrated by the shaded area in Figure 2. The outer boundary of the

triangle implies a lower bound on the acceptor’s status quo allocation.

Once the compromise class has been reached, at least one legislator must be

singled out every period to receive the zero allocation. If the proposer’s status quo

is non-zero, he gives the zero to the legislator who already had zero, if not, he

must select someone at random to receive the zero. This means that within the

compromise, there is an element of uncertainty, and legislators may have incentives
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to “game” the system by proposing a share for themselves that will give a certain

continuation payoff of γ. A proposer can do this by making a proposal that is within

Γj for all j, while making sure he does not have the highest share. This guarantees

a continuation payoff of γ.

The only way for there to be no such incentive, is if the allocations that are

attainable within Γj are so small that they offset any gain in continuation payoff. A

deviation st within Γj for all j implies, at best, a continuation payoff equal to γ, so

we must have that (1− δ)u(stj) + δγ ≤ γ. So all allocations where legislator j does

not have the highest share, stj, within Γj must satisfy

u(stj) ≤ γ.

This boundary cannot be arbitrarily imposed since the boundaries of Γj in the

next period are determined by the incentives of the next period’s proposer (legislator

j). So this upper bound on the allocations attainable in Γj must be induced by the

lower bound on the next period’s acceptors’ allocations. Figure 4 illustrates this point

for the case with three legislators. The horizontal dashed line in figure 4 represents

the upper bound on the deviation allocation for legislator 1 that is required to prevent

a deviation from the compromise class. The diagonal lines represent the lower bounds

on the acceptors’ allocations implied by Γ1.

1

23

Figure 4: Decreasing δ

The intersection of the diagonal lines, indicated by the black dot, represents

the maximum allocation the proposing legislator (legislator 1) can take while still

remaining in Γ1, based on the lower bound on the acceptors’ allocations. This

maximum must lie below the dashed line in equilibrium. The arrows indicate the

direction in which these lines move as δ decreases, so for δ low enough, we achieve the

situation depicted in figure 5. This defines the second upper bound on the discount
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factor, δ2.

1

23

Figure 5: Condition for δ2

The derivation of δ2 is given in Section 7.3 in the Appendix, but below we discuss

it intuitively. Defining φ = 1
1−δ

[
γ − δ

n+1

]
, we have δ2 such that for all δ ≤ δ2

(1− δ)u
(

1−2u−1(γ)
2(n−1)

)
+ δγ ≤ (1− δ) n+1

n+1−δu
(

2
n

[1− u−1(φ)]
)

+ δ
n+1

. (11)

The right hand side of the expression is the payoff to the coalition member when

legislator j is exactly indifferent between compromise and cherry-picking. When the

proposer is indifferent he receives an allocation equal to u−1(φ) under the cherry-

picking strategy, so each of the n
2

coalition members receive an equal share of
2
n

[1− u−1(φ)]. This is equated with the coalition member’s status quo payoff, so

(1− δ) n+1
n+1−δu

(
2
n

[1− u−1(φ)]
)

+ δ
n+1

= (1− δ)u(st−1
i ) + δγ. The left hand side of the

inequality is the lower bound on the status quo payoff to coalition members gener-

ated by imposing the upper bound on the proposer’s status quo allocation of u−1(γ).

It remains to be verified that δ < δ2 to guarantee a non-degenerate range between δ

and δ2. Lemma 3 shows that this is the case.19

Lemma 3. There exists a non-degenerate range [δ, δ2].

Proof. In the appendix. �

The upper bound on the discount factor, δ, is given by δ = min{δ1, δ2}. By

lemmas 1 and 3, it is clear that there exists a non-degenerate range
[
δ, δ
]
. The

equilibrium strategies, together with the incentive analysis in the Appendix section

7.7 and lemmas 2-3 complete the proof of proposition 1.

19Calculations of the bounds on the discount factor for specific parameterizations can be found
in the appendix in section 7.5.
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4.3 Other Compromise Classes

The above characterization focused on the specific compromise class where a single

legislator received zero and the remaining legislators split the surplus evenly. How-

ever the equilibrium is not restricted to this compromise class. The significance of

the compromise class is that it is a distinct set of allocations that signals the com-

promise, and there must be an incentive compatible algorithm to transition between

states in the compromise class, once the compromise class has been reached. Clearly,

not every compromise allocation can be sustained in this way. As mentioned before,

the perfect compromise is a notable example. The payoffs to the compromise class

must allow a non-degenerate set of allocations, Γj, and must allow a non-degenerate

range of discount factors [δ, δ]. The perfect compromise fails the latter condition.

5 Comparative Statics

The intuition that more legislators make it easier for compromise to be sustained is

reflected in the comparative statics for the range of discount factors for which this

equilibrium holds. We will show below that this range increases as the number of

legislators increases.

Proposition 2. For a large number of legislators, n, the range of discount factors

[δ, δ1] is increasing in n.

Proof. In the appendix. �

The proof proceeds by first showing that the lower bound is decreasing for large

values of n. Then we show that the difference between the lower bound and the

upper bound is increasing as a function of n for large values of n. The result is

similar for the range of [δ, δ2], but because of the complex implicit function we show

this for a parametrization of the utility function in appendix 7.5. The intuition for

this result is as follows. In this model legislators’ incentives to compromise is driven

in part by the uncertainty over their future agenda-setting power. As the number of

legislators becomes large, this uncertainty increases, thereby increasing legislator’s

willingness to compromise. This explains the decrease in the lower bound as n

becomes large. In addition, as the number of legislators increase, the difference in

current period payoff between a no-compromise proposal and a compromise proposal
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gets larger, making the no-compromise proposal more attractive, which drives up the

upper bound. Proposition 2 is illustrated in figure 6.

0 1δδ

Figure 6: Bounds on δ as n increases

We would also like to consider what happens to the range on the admissible

discount factors as the utility function becomes more concave. Consider two utility

functions u(·) and v(·), where v(·) is more concave than u(·) in the sense that v(s) ≥
u(s) for all s ∈ [0, 1], but v(·) still satisfies the normalization v(0) = 0 and v(1) = 1.

Proposition 3. As the utility function becomes more concave, the lower bound on

the discount factor decreases.

Proof. Denote the lower bound on the discount factor associated with utility function

u(·) as δu and the lower bound on the discount factor associated with utility function

v(·) as δv. The condition that defines δu can be written as

u
(

2
n

)
− n(n+1−δun)

(n+1)(n+δu−δun)
u
(

1
n

)
u
(

2
n

)
− 1

n+1

= δu.

Substituting v(·) for u(·), we have

v
(

2
n

)
− n(n+1−δun)

(n+1)(n+δu−δun)
v
(

1
n

)
v
(

2
n

)
− 1

n+1

≤ δu.

Define a mapping h : [0, 1]→ [0, 1], such that

h(δ) =
v
(

2
n

)
− n(n+1−δn)

(n+1)(n+δ−δn)
v
(

1
n

)
v
(

2
n

)
− 1

n+1

.

Lemma 4. The mapping h is a contraction with modulus β =
nv( 1

n)
[v( 2

n)− 1
n+1 ](n+1)

.

Proof. In the appendix. �

Since by lemma 4 h is a contraction, then we know that it has a unique fixed

point, and, by definition, this fixed point must be δv. Also by h increasing in δ, we
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know that δu ≥ h(δu) ≥ h(h(δu)) ≥ .... Since we know that this process converges

to the fixed point, δv, by induction δu ≥ δv.

�

The intuition for this result is that for more concave utility functions, the com-

promise becomes more attractive. So legislators do not need to be as patient to want

to sustain the compromise.

Proposition 4. As the utility function becomes more concave, the first upper bound

on the discount factor, δ1, decreases.

The proof here is identical to the proof of proposition 3 except that the mapping

h is now the mapping h1 =
v( 1

2)− n(n+1−δn)
(n+1)(n+δ−δn)

v( 1
n)

v( 1
2)− 1

n+1

, with modulus β1 =
nv( 1

n)
[v( 1

2)− 1
n+1 ](n+1)

.

Again, the intuition is that, as the utility function becomes more concave, the com-

promise outcome becomes more attractive so legislators need to be even more impa-

tient to want to maintain no compromise. Section 7.6 in the appendix shows that the

results for the second upper bound are the same for some common parameterizations.

Propositions 3 and 4 are illustrated in figure 7.20

0 1δδ

Figure 7: Bounds on δ as u(·) more concave

6 Conclusion

Casual observation indicates that almost all legislative districts in the United States

participate in benefits from distributive policies. The theoretical literature on polit-

ical compromise shows no consensus on whether or not political compromise will be

achieved in equilibrium in a general setting [Dixit et al. (2000), Lagunoff (2001), and

Kalandrakis (2004)]. We provide a general framework that predicts conditions under

which political compromise is achieved, and when compromise is not achieved.

We model legislators with concave utilities that condition strategies only on infor-

mation that is payoff relevant. We show existence of a set of equilibria that induces

20Note that by by lemmas 1 and 3 there always exists a non-degenerate range between δ and δ.
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a Markov process with two closed classes of proposals: one in which no-compromise

is the outcome and the other in which more than a minimum winning majority share

in the surplus. We refer to the latter as the compromise outcome.

The question is what determines the outcome in equilibrium. We find that the set

of initial allocations that lead to the compromise cannot be too unevenly distributed.

If they are unevenly distributed, in equilibrium, proposing legislators have an incen-

tive to propose the no-compromise outcome because they are not too patient, and

they can find enough legislators to buy off cheaply. If initial allocations are well

distributed among non-proposing legislators the proposer will choose a compromise

outcome instead, because a minimum winning coalition is too expensive to buy off.

We show that this equilibrium holds for an intermediate range of discount factors.

This range becomes larger as the number of legislators increases, indicating that

compromise is easier to sustain with a larger number of legislators, contrary to

intuition. In addition, as the utility function becomes more concave, both end-points

of the range decrease.

Interestingly, we find that the perfect compromise cannot be sustained with the

equilibrium strategies we construct (although other compromise classes can be). The

reason is that there needs to be some modest punishment for deviating from the

compromise class back to allocations that lead directly to compromise. The absence

of such a penalty leads to an infeasible range of discount factors that sustains the

equilibrium. The question still remains whether the perfect compromise can be

sustained as a Markov Perfect equilibrium of this game, but we leave this for future

work.

7 Appendix

7.1 Proof of Lemma 2

To prove the map B has a fixed point I will employ Kakutani’s Fixed Point Theorem. The space of A
and µ are [0, 1]

n(n+1)
2 and [0, 1](n+1) respectively. These spaces are non-empty, compact and convex.

The correspondence B is non-empty since Uj(st−1; Âj , A−j , µ̂j , µ−j) is continuous and the space
of Âj and µ̂j are compact so a maximizer exists. The map B must also be convex valued since
Uj(st−1; Âj , A−j , µ̂j , µ−j) is linear in µj′, and any Aj′ that maximizes Uj(st−1; Âj , A−j , µ̂j , µ−j)
must result in the same

∑
i∈Cj A

j′
i . By Theorem of the Maximum we can show that B is upper

hemicontinuous.
For Theorem of the Maximum we already know that Uj(st−1; Âj , A−j , µ̂j , µ−j) is continuous,
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we need only show M(P(Aj)) compact, and M(P(Aj)) continuous. To show M(P(Aj)) continuous
and compact note that there are a finite number of elements of P(Aj), specifically, |P(Aj)| =n Pn

2
.

So M(P(Aj)) is essentially the m-dimensional simplex, where m =n Pn
2

. This space is compact
and continuous.

7.2 Lemma 5

The following lemma shows that there is no contradiction between the lower bound on the discount
factor and the restriction on concavity.

Lemma 5. For all δ such that δ ≥ δ, we can also have n+1−δ
n+1−δnu

(
1
n

)
≤ u

(
2
n

)
.

Proof. The restriction on concavity and the lower bound on the discount factor implies

n+ 1− δ
n+ 1− δn

u

(
1
n

)
≤ u

(
2
n

)
≤ 1

1− δ

[
γ − δ

n+ 1

]
.

To show that there is no contradiction we must show that it is possible for

n+ 1− δ
n+ 1− δn

u

(
1
n

)
≤ 1

1− δ

[
γ − δ

n+ 1

]
.

Simplifying this expression gives

1 ≤ u
(

1
n

)
2n2 + n− 3δn2 − 1 + 2δ + δ2n2 − δ2

(n+ δ − δn)(n+ 1− δn)

As δ → 1 this becomes 1 ≤ nu
(

1
n

)
, which clearly holds. �

7.3 Derivation of δ

We would like to ensure that once in the compromise class, the proposer does not have an incentive
to deviate to an allocation outside the compromise class, but that would lead to the compromise
with certainty. We are interested in the maximum that the proposer, legislator j, can allocate to
himself under deviation st while remaining in Γj . This allocation should satisfy

u(stj) ≤ γ.

Since stj cannot be the largest allocation (otherwise the continuation payoff is ξ), it must be smaller
than 1

2 minus the allocations of all other legislators. Because of concavity, for an optimal deviation
all other legislators must receive the same allocation, sti, hence u(stj) ≤ u

(
1
2 − (n− 1)sti

)
. So if

u
(

1
2 − (n− 1)sti

)
≤ γ such a deviation is prevented, or

u

(
1− 2u−1(γ)

2(n− 1)

)
≤ u(sti). (12)
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For st to be in Γj the payoff to the proposer under st must not exceed the payoff to a cherry-
picking proposal. Letting Aji denote the demands of the coalition members given an allocation st

we know that these must satisfy

(1− δ)u
(

1− n

2
Aji

)
+

δ

n+ 1
≤ γ

⇒ 2
n

[
1− u−1(φ)

]
≤ Aji .

The maximum deviation for the proposer will put all the acceptors at the lower bound hence for
an optimal deviation we will have

Aji =
2
n

[
1− u−1(φ)

]
. (13)

We are interested in the deviation allocations, sti, that results in these Aji ’s for the coalition
members. Assuming all continuation strategies lead to the compromise class, the payoff to st for a
coalition member is given by

Ui(st) = (1− δ)u(sti) + δγ. (14)

To calculate their demands under a cherry-picking proposal, this must be set equal to Ui(p(A)).
Given that all coalition members are symmetric, they face equal probability of being in the coalition
of a proposer with a zero status quo allocation in the next period. Hence Ui(p(A)) is given by

Ui(p(A)) =
(1− δ)(n+ 1)
n+ 1− δ

u(Aji ) +
δ

n+ 1
. (15)

Now Aji is determined by equality of Ui(st) and U(p(A)) so after some algebra we have

u(sti) =
n+ 1

n+ 1− δ
u(Aji )−

δ

1− δ

(
γ − 1

n+ 1

)
.

Substituting for Aji from (13) gives.

u(sti) =
n+ 1

n+ 1− δ
u

(
2
n

[
1− u−1(φ)

])
− δ

1− δ

(
γ − 1

n+ 1

)
. (16)

Finally, substituting the value of u(sti) from (16) into inequality 12 gives the upper bound on
the discount factor implicitly defined by

u

(
1− 2u−1(γ)

2(n− 1)

)
≤ n+ 1
n+ 1− δ

u

(
2
n

[
1− u−1(φ)

])
− δ

1− δ

(
γ − 1

n+ 1

)
⇔ (1− δ)u

(
1− 2u−1(γ)

2(n− 1)

)
+ δγ ≤ (1− δ) n+ 1

n+ 1− δ
u

(
2
n

[
1− u−1(φ)

])
+

δ

n+ 1
.

As δ → 1 this inequality becomes nu
(

1
n

)
≤ 1

n+1 which by concavity of u(·) is a contradiction, but

as δ → 0 this inequality becomes u
(

n−2
2n(n−1)

)
≤ u

(
2(n−1)
n2

)
hence it is satisfied. Given that the
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expressions on the left hand side and right hand side are both continuous in δ, this implies that
there exists some δ for which this expression holds with equality and below which the equality is
always satisfied. This gives the second upper bound on the discount factor δ2.

7.4 Proof of Lemma 3

Now to show that δ < δ2 we have the following proof.

Proof. The condition for the upper bound on the discount factor is

(1− δ)u
(

1− 2u−1(γ)
2(n− 1)

)
+ δγ ≤ n+ 1

n+ 1− δ
(1− δ)u

(
2
n

[1− u−1(φ)]
)

+
δ

n+ 1
.

The condition for the lower bound on the discount factor is (1− δ)u
(

2
n

)
+ δ

n+1 ≤ γ. To show
that there exists a non-degenerate range we must prove that at δ the condition for δ2 is strictly
satisfied. Substituting δ

n+1 = γ − (1− δ)u
(

2
n

)
, and φ = u

(
2
n

)
into the condition for δ2 gives

(1− δ)u
(

1− 2u−1(γ)
2(n− 1)

)
+ δγ <

n+ 1
n+ 1− δ

(1− δ)u
(

2
n

[
1− u−1

(
u

(
2
n

))])
+ γ − (1− δ)u

(
2
n

)
⇔ u

(
1− 2u−1(γ)

2(n− 1)

)
+ u

(
2
n

)
<

n+ 1
n+ 1− δ

u

(
2(n− 2)
n2

)
+ γ

Notice that u
(

1−2u−1(γ)
2(n−1)

)
< u

(
1

2(n−1)

)
, so to show the non-degenerate range it suffices to show

u

(
1

2(n− 1)

)
+ u

(
2
n

)
<

n+ 1
n+ 1− δ

u

(
2(n− 2)
n2

)
+ γ. (17)

Since n ≥ 6

u

(
1

2(n− 1)

)
< u

(
2
n

)
(18)

⇔ (1− α− β)u
(

1
2(n− 1)

)
< (1− α− β)u

(
2
n

)
(19)

⇔ u

(
1

2(n− 1)

)
+ u

(
2
n

)
< (α+ β)u

(
1

2(n− 1)

)
+ (2− α− β)u

(
2
n

)
. (20)

This holds for any α and β. Now consider α such that

α

(
1

2(n− 1)

)
+ (1− α)

2
n

=
2(n− 2)
n2

⇔ α =
8(n− 1)
n(3n− 4)

,

and β such that
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β

(
1

2(n− 1)

)
+ (1− β)

2
n

=
1
n

⇔ β =
2(n− 1)
3n− 4

.

Given that 0 < α < 1, 0 < β < 1 and by strict concavity of u(·) we know that αu
(

1
2(n−1)

)
+ (1−

α)u
(

2
n

)
< u

(
2(n−2)
n2

)
and βu

(
1

2(n−1)

)
+ (1− β)u

(
2
n

)
< u

(
1
n

)
. Summing over these two gives

(α+ β)u
(

1
2(n− 1)

)
+ (2− α− β)u

(
2
n

)
< u

(
2(n− 2)
n2

)
+ u

(
1
n

)
(21)

= u

(
2(n− 2)
n2

)
+

δ

(n+ 1)(n+ δ − δn)
u

(
1
n

)
+ γ

(22)

< u

(
2(n− 2)
n2

)
+

δ

(n+ 1)(n+ δ − δn)
u

(
2(n− 2)
n2

)
+ γ

(23)

< u

(
2(n− 2)
n2

)
+

δ

n+ 1− δ
u

(
2(n− 2)
n2

)
+ γ (24)

=
n+ 1

n+ 1− δ
u

(
2(n− 2)
n2

)
+ γ. (25)

Combining this last line with inequality 20 shows that inequality 17 holds. Hence the result is
proved.

�

7.5 Proof of Proposition 2

Proof. The difference in the range of the discount factor is simply δ1 − δ, so we are interested in
the sign of ∂

∂n (δ1 − δ) = ∂δ1
∂n −

∂δ
∂n . We will first show that ∂δ

∂n is negative, and then show that ∂δ1
∂n

is either negative, but smaller in magnitude, or positive. Define the function

f(δ, n) = (1− δ)u
(

2
n

)
+

δ

n+ 1
− γ,

and define the function g(n) = δ such that f(δ, n) = 0. By the implicit function theorem we know
that

∂

∂n
g(n) = −∂nf(δ, n)

∂δf(δ, n)
.

We will show that for large values of n this is negative by first showing that the denominator
is negative and then showing that the numerator is also negative for large values of n.

Lemma 6. The partial derivative of f(δ, n) with respect to δ is negative.
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Proof. Taking a partial derivative of f(δ, n) with respect to δ gives

∂δf(δ, n) = −u
(

2
n

)
+

u
(

1
n

)
n

(n+ 1)(n+ δ − δn)2
+

1
n+ 1

.

First observe that

u
(

1
n

)
n

(n+ 1)(n+ δ − δn)2
+

1
n+ 1

<
u
(

1
n

)
n

n+ 1
+

1
n+ 1

<
u
(

1
n

)
(n− 2)

n− 1
+

1
n− 1

. (26)

The last inequality follows because both sides of the inequality are convex combinations of u
(

1
n

)
and 1, but the last expression places a higher weight on 1. Now define a such that

(1− a)
1
n

+ a =
2
n

⇔ a =
1

n− 1

By strict concavity of u(·) we know that n−2
n−1u

(
1
n

)
+ 1

n−1 < u
(

2
n

)
. Combining with (26) gives the

desired result. �

Lemma 7. The partial derivative of f(δ, n) with respect to n is negative for large values of n.

Proof. The partial derivative of f(δ, n) with respect to n is

∂nf(δ, n) =−
2(1− δ)u′

(
2
n

)
n2

− δ

(n+ 1)2
−
u
(

1
n

)
δ[2n(1− δ) + 1]

(n+ 1)2(n+ δ − δn)2

+
u′
(

1
n

)
(n+ 1− δn)

n(n+ 1)(n+ δ − δn)
.

Taking limits as δ → 0 this gives

lim
δ→0

∂nf(δ, n) = −
2u′
(

2
n

)
n2

+
u′
(

1
n

)
n2

.

Taking limits of this as n→∞ we know that u′
(

2
n

)
≈ u′

(
1
n

)
so this term is negative. �

Lemma 8. For a large number of legislators, n, the lower bound on the discount factor, δ, is
decreasing in n.

This follows from lemmas 6 and 7 we have that the result. Now define the function

f(δ, n) = (1− δ)u
(

1
2

)
+

δ

n+ 1
− γ,

and define the function g(n) = δ1 such that f(δ1, n) = 0. Again, by the implicit function theorem
we know that

∂

∂n
g(n) = −∂nf(δ, n)

∂δf(δ, n)
.
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The partial derivative of f(δ, n) with respect to δ is

∂δf(δ, n) = −u
(

1
2

)
+

u
(

1
n

)
n

(n+ 1)(n+ δ − δn)2
+

1
n+ 1

.

This is larger in absolute value than ∂δf(δ, n). The partial derivative of f(δ, n) with respect to n is

∂nf(δ, n) =− δ

(n+ 1)2
−
u
(

1
n

)
δ[2n(1− δ) + 1]

(n+ 1)2(n+ δ − δn)2
+

u′
(

1
n

)
(n+ 1− δn)

n(n+ 1)(n+ δ − δn)
.

Notice that this must be larger than ∂nf(δ, n). With a larger denominator and either positive or
smaller in absolute value numerator we must have ∂δ1

∂n > ∂δ
∂n , so ∂δ1

∂n −
∂δ
∂n must be positive. �

Since the second upper bound on the discount factor is given by a complex implicit function
it is not possible to say much about it without parameterizing the utility function. What follows
will show for a common parameterization that the range between the lower bound and the second
upper bound is increasing as n increases.

Consider the parameterization u(s) = s
1
b with b > 1. The lower bound on the discount factor

is given by the condition (1 − δ)u
(

2
n

)
+ δ

n+1 ≤ γ. Denote the left hand side of this expression as
LHSl = (1−δ)u

(
2
n

)
+ δ
n+1 and the right hand side of this expression asRHSl = γ. The upper bound

on the discount factor is given by (1−δ)u
(

1−2u−1(γ)
2(n−1)

)
+δγ ≤ (1−δ) n+1

n+1−δu
(

2
n

[
1− u−1(φ)

])
+ δ
n+1 .

Denote the left hand side of this expression as LHSu = 1 − δ)u
(

1−2u−1(γ)
2(n−1)

)
+ δγ and the right

hand side as RHSu = (1− δ) n+1
n+1−δu

(
2
n

[
1− u−1(φ)

])
+ δ

n+1 . We plot these four expressions as a
function of δ in figure 9.

δ 2δ

Figure 8: Bounds on δ, n = 6, b = 2

The blue lines indicate the conditions for the lower bound on the discount factor, with the
dashed line being the left hand side of this expression. So for all values where the dashed blue line
is below the solid blue line the condition for the lower bound on the discount factor is satisfied.
The red lines indicate the conditions for the upper bound on the discount factor, with the dashed
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red line being the left hand side of the expression. Clearly where the dashed red line is below the
solid red line, the conditions for the upper bound on the discount factor is met so the admissible
range of the discount factor is indicated between δ and δ2. Notice these values are approximately
δ ≈ 0.40 and δ2 ≈ 0.46. Now consider when n = 10 as illustrated below.

δ 2δ

Figure 9: Bounds on δ, n = 10, b = 2

Notice that the lower bound has decreased significantly, it is now approximately δ ≈ 0.38, but
the upper bound has moved very little and is still approximately δ2 ≈ 0.46. These results are
consistent for variations of the utility function and variations in n.

7.6 δ2 Decreasing with Concavity

For the parameterization u(s) = s
1
b with b > 1 the function becomes more concave as b increases.

Let us consider when the number of legislators is at it’s lower bound, so n = 6. By lemma 7.7.2 we
know that the range is greater at any higher value of n. Figure 9 illustrated when u(·) is not too
concave, so b = 2. Now let us consider when b = 10, so the utility function becomes more concave.
The expressions are plotted in figure 10 below. Notice that now δ ≈ 0.081 and δ2 ≈ 0.120. Hence
the entire range has shifted down and the absolute value of the range has decreased.

Consider also an exponential specification of the utility function,

u(s) = − exp−sλ

1− 1
expλ

+
1

1− 1
expλ

.

For this specification increases in the parameter λ represent increases in the concavity of the utility
function. The effects of increases in λ display the same result. At n = 6 and λ = 2, δ ≈ 0.46 and
δ2 ≈ 0.79. At n = 6 and λ = 10, δ ≈ 0.16 and δ2 ≈ 0.23. So again the range has shifted down and
has narrowed in absolute value.
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δ 2δ

Figure 10: Bounds on δ, n = 6, b = 10

7.7 Complete Incentives

A complete incentives analysis ensures that for each set indicated in figure 3 there is no incentive
to transition to any other set than what the equilibrium strategies dictate. So we proceed by
considering status quo allocations in each set.

7.7.1 st−1 ∈ ∆n
2
<θ≤n

Consider a status-quo st−1 ∈ ∆n
2<θ≤n. The equilibrium strategies dictate a no-compromise proposal

p such that the proposer, xt, receives payoff V x from equation (1), and all other legislators receive
payoffs V z from equation (2). These are

V x = n+1−δn
n+1

and

V z = δ
n+1 .

Consider the incentives of legislators to accept the equilibrium proposal. Under the status quo
at least n

2 non-proposing legislators are receiving payoff V z hence there at least n
2 legislators who

will accept a payoff of V z, hence achieving a majority of votes.
Now consider incentives of the proposer to propose this allocation rather than any other devi-

ation allocation. Consider deviation allocations in the following sets.

Deviation into ∆1

Consider a deviation such that the proposer proposes a compromise allocation pi for some i.
In the compromise class the best available dynamic payoff is γ given by (3). We check that γ ≤ V x.
We have
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n(n+ 1− δn)
(n+ 1)(n+ δ − δn)

u

(
1
n

)
≤ n+ 1− δn

n+ 1
,

⇔ δ ≤
1− u( 1

n )
1− 1

n

.

Let δ1 =
1−u( 1

n )
1− 1

n

. To show that this is not profitable deviation it suffices to show that δ ≤ δ1 where
defined by condition (11). Plugging δ1 into (11) we obtain:

LHS = u

 1−2u−1

(
n2u( 1

n )−1

n2−1

)
2(n−1)


RHS = −n

2(1−u( 1
n ))

n2−1

Since the RHS of this inequality is negative and the LHS is positive, the condition is violated
meaning that δ < δ1. So δ implies that γ ≤ V x. It is useful to note that at δ1, the value φ = 1.
This will be useful below.

Deviation into ∆n
2<θ<n

Consider a deviation to an arbitrary allocation in ∆n
2<θ<n

, once in this set equilibrium dynamics
dictate proceeding to the no compromise set ∆n. Hence the continuation values of the deviation
into ∆n

2<θ<n
and playing the equilibrium outlined for ∆n are identical. It thus suffices to compare

the stage allocations from the deviation to the equilibrium allocation where the proposer, legislator
j, receives 1−

∑
i 6=j s

t
i. Clearly 1−

∑
i 6=j s

t
i < 1 so this is not a profitable deviation.

Deviation into ∆θ=n
2

Consider a deviation to an allocation in ∆θ=n
2

, once in this set equilibrium dynamics dictate
proceeding to the no-compromise set, ∆n, or if the proposer, xt+1, possesses a zero status quo
allocation then proceed to ∆n

2<θ<n
. Under the deviation proposal the proposer receives

(1− δ)u

1−
∑
i 6=j

sti

+ δVj(st). (27)

Substituting for the different values of Vj(∆n
2

; stxt = 0) in equation (8) we obtain the following. If
Vj(∆n

2
; stxt = 0) = δ

n+1 , we have that Vj(st) = 1
n+1 . As shown above, the continuation value is the

same for the proposer but the stage payoff is lower hence this is not a profitable deviation. Now
consider if Vi(∆n

2
; stxt = 0) = (1− δ)u (A(b∗)) + δ

n+1 , so that he ensures he is in the coalition in the
next period. The subsequent proposal strategies are such that the probability assigned to him being
in the coalition ensures that his dynamic payoff is exactly equal to (1−δ)u (A(b∗))+ δ

n+1 , hence this
cannot be a profitable deviation. Last, for the case Vj(∆n

2
; st−1
xt = 0) = (1− δ)u (1−A(b∗)) + δ

n+1 .
For this to be the continuation from the deviation, it must be that the proposer allocates a zero
share to himself. Substituting this into (27), we show that the deviation payoff is equal to
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δ

n+ 1
(1− δ)u(1−A(b∗)) +

δ2

n+ 1
.

This is clearly less than V x since δ
n+1u (1−A(b∗)) < 1.

Deviation into ∆c
θ<n

2

Consider a deviation to an allocation in ∆c
θ<n

2
. The payoff from this deviation is given by

equation (10). This is

Uj(st; A∗, µ∗) = (1− δ)u(stj) + δVj(A∗, µ∗).

Let us consider the continuation payoff Vj(A∗, µ∗). Notice that if legislator j is included in any
coalition in the next period, equilibrium proposal strategies, µ∗i, are such that his payoff from the
allocation st are equal to or less than his payoff from the next period’s cherry-picking allocation,
hence

Uj(st; A∗, µ∗) ≤ (1− δ)u(A∗i) + δVj(A∗i).

This payoff we just showed is always lower than V x, hence this is not a profitable deviation.
Now consider if he is not included in a coalition in the next period. As shown below in section

7.7.3 this continuation payoff is strictly less than 1
n+1 , and since 1−

∑
i 6=j s

t
i < 1 this deviation is

also not profitable.

Deviation into Γ
A deviation into the set Γ may imply a deviation into any arbitrary intersection of Γi. Note

that if it is any intersection that includes Γj , by δ the status quo payoff to being in Γj is never
greater than γ, and we know again by δ that γ < V x hence this is not a profitable deviation. Now
consider a deviation into some arbitrary intersection that does not include Γj . If the deviation is
such that legislator j is included in any other legislator’s coalition, by the same arguments above
the payoff from the deviation is Uj(st; A∗, µ∗) = (1−δ)u(A∗ij )+δV (A∗i), which we showed is always
lower than V x.

So we must consider when the deviation allocation is not in Γj , and the legislator is not
included in anyone else’s coalition. By the upper bound on the discount factor the minimum stage
payoff to coalition members, sti, in Γi for any i satisfies, u

(
1−2u−1(γ)

2(n−1)

)
≤ u(sti). Hence the stage

payoff to any other player, when an allocation is in Γi must be less than γ. In continuation, the
proposing legislator gets at most V x if he is the proposer, δ

n+1 if he is not the proposer and the
legislator does not choose compromise, and γ if he is not the proposer and the legislator chooses
compromise. Letting α denote the fraction of legislators that would choose compromise, the payoff
for the proposing legislator under such a deviation. st is

Uj(st) ≤ (1− δ)γ + δ

[
1

n+ 1
V x +

(
1− 1

n+ 1
− α

)
δ

n+ 1
+ αγ

]
.

Noting that this is a convex combination of values that are no greater than V x, this payoff is not
greater than V x.
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7.7.2 st−1 ∈ ∆n
2

When the status quo is in ∆n
2

equilibrium strategies specify either a no compromise proposal if
the proposer has a positive status-quo allocation, or a cherry-picking proposal, pj(A(b∗)), if the
proposer has a status quo allocation of zero. For st−1

xt > 0, where the the equilibrium proposal
made is in ∆n, the incentives analysis is identical to status quo allocations in ∆n

2<θ≤n. Below we
will show that for st−1

xt = 0, there are no profitable deviations.
Let us first check the incentives of the accepting legislators. The payoff to the legislator receiving

zero allocation is δ
n+1 , and the payoff under the status quo allocation is δVi(A∗j), where

δVi(A∗j) =
δ

n+ 1
[δ + (1− δ)u(1−A(b∗))] .

Simplifying shows that δ
n+1 > δVi(A∗j) since 1 > u(1 − A(b∗)). The legislator that is offered a

positive status quo allocation is offered A(b∗) with probability µi, where A(b∗) and µi are calculated
to make the accepting legislator exactly indifferent to the status quo.

Now we consider possible deviation proposals by the proposer. Under the equilibrium strategies
the proposer receives the payoff (1− δ)u(1−A(b∗)) + δ

n+1 .

Deviation into ∆n
2≤θ≤n

For deviations in ∆n
2≤θ≤n, we rely on the proof in Kalandrakis (2007) but restate his concavity

restrictions and show that it is satisfied by the concavity restriction in assumption 1. First to ensure
that the amount allocated to the coalition member, A(b∗), is not greater than 1−A(b∗), the utility
function cannot be too concave, so

(n+ 1)(n+ 2)
(n+ 1)(n+ 2)− δ

u

(
2

n+ 2

)
≤ u

(
1
2

)
.

Note that by proposition 1 the utility function satisfies n+1−δ
n+1−δnu(sti) ≤ u(2sti)⇒ n+1−δ

n+1−δnu
(

2
n+2

)
≤

u
(

4
n+2

)
. Since

(n+ 1)(n+ 2)
(n+ 1)(n+ 2)− δ

u

(
2

n+ 2

)
<

n+ 1− δ
n+ 1− δn

u

(
2

n+ 2

)
and because n ≥ 6

u

(
4

n+ 2

)
≤ u

(
1
2

)
.

So we have

(n+ 1)(n+ 2)
(n+ 1)(n+ 2)− δ

u

(
2

n+ 2

)
< u

(
1
2

)
.

Second, to ensure that a proposer will not prefer another allocation in ∆n
2

to the equilibrium
proposal it must also be the case that
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n+ 1
n+ 1− δ

u(sti) ≤ u
(n

2
sti

)
.

Again by assumption 1 we have

n+ 1
n+ 1− δ

u(sti) ≤
n+ 1− δ
n+ 1− δn

u(sti) ≤ u(2sti) ≤ u
(n

2
sti

)
.

Hence these inequalities are satisfied.

Deviation into ∆1

This holds by δ1. See section 4.1.2.

Deviation into ∆c
θ<n

2

This deviation involves allocating more than n
2 players a positive share under the deviation

proposal. Equilibrium strategies after the deviation dictates an allocation in ∆n
2

, for which the
continuation payoffs are no greater than in ∆n as shown in section 7.7.3. The proposer will have to
allocate a positive share to at least one player that possesses a positive share under the status quo,
making him at least indifferent to the status quo, as in the equilibrium strategy, and, in addition,
allocate some εj > 0 to another n

2 − 1 players also making them at least indifferent to the status
quo. This implies a lower stage payoff to proposer than under the equilibrium strategy, while not
improving the proposer’s continuation payoff. Hence this is not a profitable deviation.

7.7.3 st−1 ∈ ∆c
θ<n

2

Consider incentives when the status quo is an element of ∆c
θ<n

2
and legislator j is the proposer.

From these allocations legislator j makes a cherry-picking proposal such that coalition members
i ∈ Cj are offered the demands Aj∗i , where Aj∗ and µj∗ solve

(Aj∗, µ̂j∗) ∈ arg maxÂj ,µ̂j Uj(s
t−1; Âj , A−j∗, µ̂j , µ−j∗)

s.t. Âj = Âj(st−1; A∗, µ̂j , µ−j∗)
µ̂j ∈M(P(Aj∗))

and µj∗(p(Aj∗)) = µ̂j(p(Aj∗))}.

So

Aj∗i = u−1

[
min{max{0, 1

1− δ
(
Ui(st−1; A∗, µ∗)− δVi(Aj∗)

)
}, 1}

]
.

Let us first check the coalition member’s incentives. We must verify that coalition members will
prefer this allocation to the status quo. Note that if Aj∗i < 1, then Ui(st−1; A∗, µ∗) ≤ Ui(p(A∗j)).
We know that if the proposer did not choose the compromise allocation then

∑
i∈Cj A

j∗
i < 1 −
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u−1(φ) < 1 hence each coalition member’s demand must also be less than 1 hence their incentives
hold.

Now let us check the proposer’s incentives. Given that this solves the maximization problem
for the proposer we know the proposer would prefer this to any other cherry-picking allocation that
would be accepted, or any compromise allocation. We must also verify that the proposer would
prefer this to remaining at the status quo allocation. Under the status quo the proposer has the
payoff

Uj(st−1; A∗, µ∗) = (1− δ)u(st−1
j ) + δVj(A∗, µ∗).

Under the cherry-picking proposal, he has payoff

Uj(p(A∗j)) = (1− δ)u

1−
∑
i∈Cj

A∗ji

+ δVj(A∗j).

We will prove that Uj(st−1; A∗, µ∗) ≤ Uj(p(A∗j)) by first showing that Vj(A∗, µ∗) ≤ Vj(A∗j)
and then showing that u(st−1

j ) ≤ u
(

1−
∑
i∈Cj A

∗j
i

)
. We will first consider the lower bound on

Vj(A∗j). This will be where legislator j is not included in the coalition when the status quo is in
∆n

2
and st−1

xt = 0, so

Vj(A∗j) =
1

n+ 1

(
n+ 1− δn
n+ 1

+
n

2
δ

n+ 1
+
n

2
δ

n+ 1

)
=

1
n+ 1

Now let us consider the upper bound on Vj(A∗, µ∗). Here Vj(A∗, µ∗) is given by

Vj(A∗, µ∗) =
1

n+ 1

Uj(p(A∗j)) +
∑
i 6=j

 ∑
p(Ai∗)∈P(Ai∗)

Uj(p(Ai∗))µi∗(p(Ai∗))


 . (28)

When legislator j is not the proposer he is in another legislator’s coalition if Uj(st−1; A∗, µ∗) is
sufficiently low. So at a maximum value of Uj(st−1; A∗, µ∗) legislator j is not included in the other
legislator’s coalition so Uj(p(Ai∗)) = δVj(Ai∗) for all i 6= j. Substituting this into (28) gives

Vj(A∗, µ∗) =
1

n+ 1

(1− δ)u

1−
∑
i∈Cj

A∗ji

+ δVj(A∗j) +
∑
i 6=j

δVj(Ai∗)

 . (29)

We showed above that Vj(Aj∗) = 1
n+1 . When any other legislator i 6= j proposes in period t,

Vj(Ai∗) is given by

Vj(Ai∗) =
1

n+ 1

((n
2

+ 1
)
V z +

n

2
Vj(∆n

2
; stxt+1 = 0)

)
. (30)

Here Vj(∆n
2

; stxt+1 = 0) = (1−δ)u(1−A(b∗))+ δ
n+1 when legislator j is the proposer in period t+1

and is δ
n+1 when all other legislators propose in period t+1. Substituting into (30) and simplifying

gives
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Vj(Ai∗) =
(1− δ)
n+ 1

u(1−A(b∗)) +
δ

n+ 1
. (31)

Substituting these values into (28) gives

Vj(A∗, µ∗) =
1

n+ 1

(1− δ)u

1−
∑
i∈Cj

A∗ji

+ δ

 1
n+ 1

+
∑
i 6=j

{
(1− δ)
n+ 1

u(1−A(b∗)) +
δ

n+ 1

}
=

1
n+ 1

(1− δ)u

1−
∑
i∈Cj

A∗ji

+ δ

1 + δn

n+ 1
+

1− δ
n+ 1

∑
i 6=j

u(1−A(b∗))

 .
Notice that the value in square brackets is the convex combination of two values that are less than
1, hence the value in brackets is less than 1 making Vj(A∗, µ∗) ≤ 1

n+1 = Vj(A∗j).

Now we must prove u(st−1
j ) ≤ u

(
1−

∑
i∈Cj A

∗j
i

)
, or st−1

j ≤ 1−
∑
i∈Cj A

∗j
i . First observe that

if st−1
i are equal for all i ∈ Cj , this implies the minimum value of

∑
i∈Cj A

∗j for any given st−1
j .

Now observe that st−1
j ≤ 1 − nst−1

i since all other legislators must have at least as high a status
quo allocation as the coalition members if we assume the legislators with the lowest status quo
allocations are always in the coalition. To express

∑
i∈Cj A

∗j
i in terms of st−1

i we must calculate
the value of A∗ji as a function of st−1

i . Recall that

Aj∗i = u−1

[
min{max{0, 1

1− δ
(
Ui(st−1; A∗, µ∗)− δVi(Aj∗)

)
}, 1}

]
. (32)

Here Ui(st−1; A∗, µ∗) = (1 − δ)u(st−1
i ) + δVi(A∗, µ∗). We wish to find the maximum value of

Ui(st−1; A∗, µ∗), let’s call this value U i. This is where legislator i is included in n other legislator’s
coalition in period t, and recall that if he is included in the coalition then he receives at least U i.
So

U i = (1− δ)u(st−1
i ) +

δ

n+ 1
[
Ui(p(A∗i)) + nU i

]
.

The maximum value Ui(p(A∗i)) can take is V x. Substituting in 33 and simplifying gives

U i =
(1− δ)(n+ 1)
n+ 1− δn

u(st−1
i ) +

δ

n+ 1
. (33)

Now (32) is equivalent to setting U i = Ui(p(A∗j)) and solving for A∗ji when A∗ji > 0. So we
conjecture that A∗ji > 0 and find the minimum value of Ui(p(A∗j)). Let’s call this minimum value
U i. Given that we are considering coalition members with equal status quos and hence equal values
of A∗ji , they will face equal probability, 1

n+1 , of being in the coalition of the period t+ 1 legislator
if his status quo allocation was zero. So

U i = (1− δ)u(A∗ji ) +
δ

n+ 1
[V x + (n− 1)V z + U i] .

Substituting and simplifying gives
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U i =
(1− δ)(n+ 1)
n+ 1− δ

u(A∗ji ) +
δ

n+ 1
.

Setting U i = U i yields

u(A∗ji ) =
n+ 1− δ
n+ 1− δn

u(st−1
i ). (34)

Notice that st−1
i > 0 by assumption, hence the conjecture that A∗ji > 0 is proved true. We wish to

have 1− nst−1
i ≤ 1− n

2A
∗j
i . Substituting from (34) for A∗ji and simplifying gives

n+ 1− δ
n+ 1− δn

u(st−1
i ) ≤ u(2st−1

i ).

This is satisfied by the restriction on concavity in assumption 1.

7.7.4 st−1 ∈ Γ

Let us first consider st−1 in
⋂n+1
j=1 Γj , and the incentives of the proposing legislator. Since µ∗j(pi) =

1 is the solution to the fixed point of the map B we know that pi is optimal for the proposer among
cherry-picking strategies and among compromise proposals. We also know by the upper bound on
the discount factor, δ, that the proposer will prefer the compromise to remaining at the the status
quo allocation.

Now let us consider the incentives of the accepting legislators. Since the status quo is an element
of
⋂n+1
j=1 Γj and all legislators are symmetric, we know by the upper bound on the discount factor,

δ, that the highest status quo payoff available to any legislator satisfies (1 − δ)u(st−1) + δγ ≤ γ.
Hence no legislator has an incentive to deviate from accepting the compromise allocation.

Now consider st−1 ∈ Γ where 0 < µ∗j(pi) < 1 for some proposing legislator j and some i.
Consider the proposing legislator’s incentives. Again, we know since µ∗j(pi) is the solution to the
fixed point of the map B the proposer is indifferent between the compromise proposal pi and some
cherry-picking strategy, so the payoff to legislator j when he is the proposer is γ regardless, and
this is optimal among cherry-picking proposals and compromise proposals. We must check that
it is preferred to the status quo. If legislator j is not the proposer, other legislators will choose
either a cherry-picking strategy or a compromise proposal. Under another legislator’s cherry-picking
strategy, his payoff is highest when he is included in the coalition, and then he is given at most his
status quo payoff. Let us call this status quo payoff, Uj , and let’s say with probability µ he receives
this payoff, and with probability 1 − µ he receives γ under a compromise. His status quo payoff
can therefore be written down as

Uj = (1− δ)u(st−1
i ) + δ [(1− µ)γ + µUj ]

⇔ Uj =
1− δ

1− δµ
u(st−1

i ) +
(1− δ)µ
1− δµ

γ.

To show that the proposer has no incentive to deviate from the compromise proposal to the status-
quo, we must show that γ ≥ Uj . This is true, by the upper bound on the discount factor. Since we

43



know that they highest status quo payoff to any proposer j when the status quo is in Γj satisfies
u(st−1

i ) ≤ γ.
Now we must check the incentives of legislators to accept the proposal. Consider a status quo

allocation of the form
(
ε, 1−ε

n , . . . , 1−ε
n

)
. With the proposer receiving ε and all other legislators

receiving 1−ε
n . This would represent the most restrictive allocation in Γj for the proposer. That is,

any other allocation in Γj must result in a lower payoff for potential coalition members. If at such
an allocation acceptors will accept the compromise, then they will accept at any other allocation.
Let us denote the payoff to this status quo allocation as Ui. This is given by

Ui = (1− δ)u
(

1− ε
n

)
+ δVi(A∗, µ∗).

We wish to place an upper bound on the continuation payoff Vi(A∗, µ∗). If an accepting
legislator i becomes the proposer, he can obtain a dynamic payoff of no more than V x or n+1−δn

n+1 .
If legislator i is not the proposer, and legislator j is the proposer, he can obtain no more than
γ. If any of the n − 1 other legislators is the proposer, since all legislators have equal status quos
except legislator j, they have equal probability of being in the coalition hence, they receive payoff
Ui again. Otherwise they receive at most δ

n+1 . Hence the payoff Ui can be written as

Ui = (1− δ)u
(

1− ε
n

)
+

δ

n+ 1

[
n+ 1− δn

n
+ γ +

n− 1
2

Ui +
n− 1

2

]
⇔ Ui =

2(n+ 1)(1− δ)
2(n+ 1)− δ(n− 1)

u

(
1− ε
n

)
+

2δ
2(n+ 1)− δ(n− 1)

[
2− δ

2
+ γ

]
We wish to show that this payoff is no greater than γ. Taking limits as ε→ 0 and simplifying

we have

γ ≥ Ui

⇔ γ ≥ 2
2− δ

(1− δ)u
(

1
n

)
+

δ

n+ 1
.

By the lower bound on the discount we know that γ ≥ (1 − δ)u
(

2
n

)
+ δ

n+1 and by the restriction
on concavity we know that u

(
2
n

)
≥ n+1−δ

n+1−δnu
(

1
n

)
. So we have

γ ≥ (1− δ)u
(

2
n

)
+

δ

n+ 1
≥ n+ 1− δ
n+ 1− δn

(1− δ)u
(

1
n

)
+

δ

n+ 1
.

It remains to show that n+1−δ
n+1−δn ≥

2
2−δ . Simplifying, we show that this is true since n > 2.

Clearly the payoff for the proposer if the status quo is in Γ/Γj satisfies the above condition
by symmetry, that is Uj ≤ γ. And if the status quo is in Γ/Γj , since (A∗j , µ∗j) is the solution to
the fixed point of the map B it must be that γ < (1 − δ)u

(
1−

∑
i∈Cj A

∗j
)

+ δVj(A∗j). Hence

Uj < (1− δ)u
(

1−
∑
i∈Cj A

∗j
)

+ δVj(A∗j) hence he will have no incentive to deviate to from the
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equilibrium strategy.

7.7.5 st−1 ∈ ∆1

Consider a status-quo st−1 ∈ ∆1. The equilibrium strategies dictate a compromise proposal pi such
that all legislators except legislator i receives payoff γ and legislator i receives payoff ξ. Consider
the incentives of legislators to accept. Under the status quo at least n−1 non-proposing legislators
are receiving payoff γ hence there at least n − 1 legislators who will accept a payoff of γ, thereby
achieving a majority of votes.

Now consider incentives of the proposer to propose this allocation rather than any other devi-
ation allocation. Consider deviation allocations in the following sets.

Deviation into ∆n

As shown above the payoff from proposing p compared to p would represent a profitable
deviation for the proposer ∆1. So we need to check the incentives for coalition members to accept
such a proposal. The payoff for coalition members from the deviation would be V z whereas the
payoff from the status quo is γ. Clearly

V z ≤ γ

⇔ δ(n+ δ − δn) ≤ nu
(

1
n

)
(n+ 1− δn)

Hence the proposer will not be able to form a coalition that accepts such a proposal, and the
deviation is not possible.

Deviation into Γ
In section 7.7.4 we showed that the dynamic payoff to any status quo in Γ is no greater than

γ hence deviating to Γ is never profitable from ∆1.

Deviation into ∆n
2<θ<n

We have already shown in section 4.1.1 that by δ this is not a profitable deviation.

Deviation into ∆n
2
∪∆c

θ<n
2

In section 4.1.1, δ implied by condition 5 ensures that a deviation from the compromise class
to an allocation with cherry picking in ∆n

2<θ<n
is not possible. Attempting to deviate into ∆n

2
,

requires compensating an extra player over and above the n
2 − 1 in deviating into ∆n

2<θ<n
. If

compensating n
2 − 1 players is not profitable for any proposer, then it follows that compensating n

2

players will be even less profitable, hence this deviation is also ruled out.

7.8 Proof of Lemma 4

To show that h is a contraction with modulus β =
nv( 1

n )
[v( 2

n )− 1
n+1 ](n+1)

we have the following proof.

45



Proof. The distance between x and y is simply the Euclidean distance |x− y|. Hence

|h(x)− h(y)| =
v
(

2
n

)
− n(n+1−xn)

(n+1)(n+x−xn)v
(

1
n

)
v
(

2
n

)
− 1

n+1

−
v
(

2
n

)
− n(n+1−yn)

(n+1)(n+y−yn)v
(

1
n

)
v
(

2
n

)
− 1

n+1

= −
nv
(

1
n

)
(n+ 1)

[
v
(

2
n

)
− 1

n+1

] [n+ 1− xn
n+ x− xn

− n+ 1− yn
n+ y − yn

]

=
nv
(

1
n

)
(n+ 1)

[
v
(

2
n

)
− 1

n+1

] [ x− y
(n+ x− xn)(n+ y − yn)

]

≤
nv
(

1
n

)
(n+ 1)

[
v
(

2
n

)
− 1

n+1

] (x− y).

�
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