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Abstract

In this paper, we demonstrate the effi ciency of seller entry in a model
of competing auctions. We generalize the competitive search literature
by simultaneously allowing for nonrival (many on one) meetings and
private information. We consider both the case in which buyers learn
their valuations before visiting a seller and the case in which they
learn their valuations after visiting the seller. We also allow for seller
heterogeneity with respect to reservation values.

1 Introduction

In this paper, we consider the effi ciency of entry in a model of competitive
search. By “competitive search”we mean that we analyze a large market
in which buyers (or sellers) can direct their search based on the terms of
trade that are posted with full commitment by their counterparts on the
other side of the market. We consider in particular entry on the side of the
market on which the terms of trade are advertised.

Moen (1997) and Shimer (1996) demonstrate the effi ciency of entry in
a competitive search market with two special features. First, meetings be-
tween buyers and sellers are assumed to be one-on-one (“rival” in the ter-
minology used by Eeckhout and Kircher 2010). Second, there is complete
information “within” any buyer-seller match, i.e., once a buyer and seller
meet there is no private information. This literature shows how competition
in posted wages among firms in a labor market with search frictions can
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ments. We also benefited from discussions with Björn Brügemann, Xiaoming Cai, and
various seminar participants.
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implement the Hosios (1990) condition, i.e., the condition required for the
constrained-effi cient level of vacancy creation in the Diamond-Mortensen-
Pissarides model (Pissarides 2000).

We generalize this literature on effi cient entry in competitive search in
two directions. First, we allow for many-on-one (“nonrival”) meetings; i.e.,
a seller may interact with two or more buyers at the same time. Specifi-
cally, as is standard in the competing auctions literature, we assume urn-
ball matching. Second, we allow for asymmetric information; e.g., a seller
may not know how much the buyers she is interacting with value her good.
With a rival meeting technology and complete information, the only relevant
mechanism for selling a good is price posting. With nonrival meeting and
asymmetric information, there are other mechanisms, such as auctions, to
consider.

In the environment that we consider, the simplest optimal mechanism
for sellers is a second-price auction. The competing auctions literature, e.g.,
McAfee (1993) and Peters and Severinov (1997), considers the characteristics
of these auctions (in particular, reserve prices) as the market gets large. In
a homogeneous-seller environment, competition drives reserve prices to the
common seller reservation value. We add to this literature by considering
the effi ciency of seller entry.

When goods are auctioned, buyers extract an information rent from sell-
ers. One might therefore expect that the equilibrium level of seller entry into
a competitive search market would be less than the level that a social plan-
ner would choose. There is, however, a counterbalancing force, namely, that
when a seller enters the market, she “steals”buyers from the sellers who were
already there, and so potentially reduces the surpluses associated with these
sellers. Our main result is that in a large market when the meeting tech-
nology is nonrival and when sellers are free to choose their preferred selling
mechanisms, these two effects —information rent versus business stealing —
exactly offset each other, leading to the socially effi cient level of seller entry.

In the next section, we set up the model. We discuss two cases —first,
the case in which buyers learn their valuations ex post, that is, only after
choosing a buyer to visit, and second, the case in which buyers know their
valuations ex ante. We show in both cases that an optimal mechanism is a
second-price auction with not only a zero reserve price but also a zero par-
ticipation fee. In Section 3, we present our main result that in competitive
search equilibrium seller entry is constrained effi cient. In this section, we also
demonstrate a similar result in an environment with private information but
a rival meeting technology. Section 4 extends the model to allow for seller
heterogeneity with respect to reservation values and section 5 concludes.
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2 The Basic Model

2.1 Environment

We consider a market with B buyers and S sellers with B,S → ∞. We let
B/S = θ denote “market tightness.” In this market, each buyer wants to
purchase one unit; each seller has one unit of the good for sale. Every seller
posts and commits to a selling mechanism, and each buyer, after observing
all posted mechanisms, chooses one seller from whom he will attempt to
buy the good. The meeting technology is purely nonrival — the fact that
one or more buyers choose to visit a particular seller does not make it more
diffi cult for any other buyer to visit that seller. Finally, as is standard in the
directed search literature, we assume that buyers cannot coordinate their
visiting strategies.

We model asymmetric information in this market in a particular way.
Specifically, we assume that buyer valuations for the good are distributed as
X ∼ F (x), a continuous distribution function with corresponding density,
f(x). We normalize the range of X to [0, 1]. Buyer draws of valuations are
independently and identically distributed and are private information; i.e.,
we are considering a model of “independent private values.”We consider two
cases. In the first, buyers know their valuations ex ante, i.e., before deciding
which seller to visit. One might, for example, imagine sellers offering vaca-
tion packages. Buyers differ in their willingness to pay for this good —some
are very eager to go on vacation and are willing to pay a high price if neces-
sary; others are happy to go on vacation but only if they can do so at a low
enough price. In the second case, buyers learn their valuations ex post, i.e.,
only after choosing a particular seller. This is the “inspection good”case,
and in this case we treat buyer valuations as idiosyncratic match-specific
random variables. Consider, for example, buyers looking to purchase in a
“vertically homogeneous”segment of the housing market. Even though the
houses in this market may look ex ante identical, a buyer, upon visiting
a particular house, will have a personal idiosyncratic reaction —some buy-
ers like houses with brightly colored wallpaper while others prefer a more
subdued decor, etc.

On the seller side, we also consider two cases. First, we consider the
simpler case of homogeneous sellers. In this case, we assume that all sellers
have the same reservation value, which we normalize to zero. In the sec-
ond case, we allow for seller heterogeneity. A fraction q of the sellers have
reservation value s > 0 while the remaining sellers have reservation value
zero. We interpret seller type as motivation — the sellers with the higher
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reservation value are “relaxed" about selling their good while those with
reservation value zero are “desperate” (or, as is often seen in housing ads,
“motivated”). Seller type is private information; q is common knowledge.

We first consider the simpler case of homogenous sellers. Our analysis
of the two cases —buyers learn their valuations ex ante versus buyers learn
their valuations ex post — draws heavily on Peters and Severinov (1997),
who analyze “competitive matching equilibrium”in large markets for these
two cases. The Peters and Severinov treatment of the ex ante case builds
on work by McAfee (1993); their treatment of the ex post case extends
Wolinsky (1988). This analysis is done taking market tightness as given
and is a building block for the main contribution of our paper, namely, the
analysis of seller entry in competitive search equilibrium.

2.2 Competitive Search Equilibrium —The Ex Post Case

Peters and Severinov (1997) consider competition in a large market in which
homogeneous sellers, each with reservation value 0, post reserve prices for
second-price auctions. They show that in the limit the symmetric equilib-
rium reserve price solves

max
r,ξ

Π(r, ξ) subject to V (r, ξ) ≥ V ,

where

Π(r, ξ) = ξ

∫ 1

r
v(x)e−ξ(1−F (x))f(x)dx (1)

is the expected payoff that a seller can expect if she posts reserve price r,
inducing a Poisson arrival rate of buyers equal to ξ, and

V (r, ξ) =

∫ 1

r
(1− F (x))e−ξ(1−F (x))dx (2)

is the expected payoff for a buyer who chooses this seller. Here

v(x) = x− 1− F (x)

f(x)
(3)

is the “virtual valuation function”and V is the expected payoff available to
buyers elsewhere in the market. The constraint, V (r, ξ) ≥ V , expresses the
idea that the “market utility property” applies in the competing auctions
environment.

Peters and Severinov (1997, p.156) argue that the reserve price does not
fall to zero in competitive search equilibrium. However, this turns out to
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be incorrect as we show in an earlier paper (Albrecht, Gautier and Vroman
2012). In the unique symmetric equilibrium, all sellers post r = 0 and
buyers randomize their visits across sellers, i.e., ξ = θ. The equilibrium
allocation is thus constrained effi cient — “constrained” in the sense that
a social planner cannot choose which buyers to allocate to which sellers.
That is, each seller who is visited by one or more buyers sells her good to
the buyer with the highest valuation. In addition, given the constraint that
buyers cannot coordinate their strategies, buyer randomization across sellers
maximizes the expected number of transactions.

The intuition for this result is as follows. A seller chooses a reserve price
to maximize her expected payoff subject to the constraint that the expected
payoff for each buyer entering her auction should be no less than is available
from other sellers. A seller’s expected payoff is the total surplus generated
by her auction minus the expected surplus of each buyer who participates
in her auction. However, in a large market, expected buyer surplus is fixed
by the market utility property, so it is in each seller’s interest to choose the
reserve price, namely r = 0, that maximizes total surplus.1 In fact, a large
market is not, strictly speaking, needed for this result. Levin and Smith
(1994) consider a single seller offering a second-price auction with reserve
price r who faces N potential buyers, each with a common outside option.
Each buyer chooses to visit this seller with probability q (each buyer pays
a cost if he participates in the auction, so q is endogenously determined),
and the seller takes into account that reducing r increases q. Their result
—endogenizing buyer entry drives r to zero, even though there is only one
seller in the market — is generated by the fixed outside option, which is
playing the same role as “market utility”does in the large market case.

We can augment the Peters and Severinov analysis by allowing a seller
to charge a fee for participating in her auction. Now the problem for each
seller is one of choosing φ, r and ξ to maximize

φξ + Π(r, ξ) subject to − φ+ V (r, ξ) ≥ V ,

where φ is the participation fee. The seller maximand reflects the fact that
the seller can expect ξ participants in her auction, each paying an participa-
tion fee of φ; the constraint on the buyer side reflects the fact that a buyer
who participates in this seller’s auction has to pay the participation fee. A

1More generally, this intuition applies in many other competitive search models with
asymmetric information, e.g., Lester, Visschers and Wolthoff (2013) and Albrecht, Gautier,
and Vroman (2013). Even though the effi cient mechanism may vary with the assumed
environment, the market utility property gives agents who post the terms of trade the
same incentive to choose an effi cient mechanism.
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straightforward extension of Albrecht, Gautier and Vroman (2012) shows
that both φ and r are zero in the symmetric competitive search equilibrium
and, again, that buyers randomize their visits across sellers, i.e., ξ = θ.2

The fact that both reserve prices and participation fees are zero in a large
market with a nonrival meeting technology means that not only is effi ciency
ensured in competitive search equilibrium but also that the division of total
surplus between buyers and sellers is determined. This result is related to
one derived in Gorbenko and Malenko (2011). They consider competition in
“securities auctions”in which sellers auction off the right to develop projects
for a combination of cash and a share of the profits. Getting buyers to pledge
a profit share is a way for sellers to recapture some of the information rent
associated with buyer private information. Proposition 4 in Gorbenko and
Malenko (2011) shows that as the number of buyers and sellers in the market
gets large, all-cash auctions are posted in the competitive search equilibrium.
That is, as the market gets large, competition prevents sellers from “clawing
back”any part of the information rent.

2.3 Competitive Search Equilibrium —The Ex Ante Case

Before we consider seller entry in the ex post case, we characterize the equi-
librium in competing auctions for the case in which buyers know their valua-
tions before choosing which seller to visit. It turns out that the competitive
search equilibrium is the same as in the ex post case, but interestingly, the
argument is quite different. Competition in selling mechanisms in the ex
ante case was first considered in McAfee (1993). Our treatment follows
Peters and Severinov (1997) and Peters (2013).

McAfee (1993) makes the following argument to show that all sellers
post r = 0 in the ex ante case. Suppose buyers know their valuations
before deciding which seller to visit. Suppose further that all sellers post
positive reserve prices so that buyers with low valuations are shut out of the
market. Now consider the seller posting the lowest reserve price, say r′ > 0.
If this seller deviates to r = 0, she captures the entire market between zero
and r′. What is more interesting is that the deviant seller doesn’t lose any
buyers (in expectation) with valuations above r′. The reason is that buyers
with valuations above r′ don’t care about competition from buyers with
valuations below r′.More precisely, a buyer with valuation x > r′ knows that
the lowest price he can possibly pay if he wins the auction is r′ irrespective of
whether this seller is posting r = r′ or r = 0. Buyers with valuations above

2Similarly, Levin and Smith (1994) show in their environment that if the seller chooses
both a reserve price and an participation fee, both are set to zero.
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r′ continue to allocate themselves across all sellers (including the deviant)
exactly as they would have absent the deviation. This argument further
implies that no seller (regardless of what reserve prices are set by the other
sellers) wants to set a positive reserve price. Thus, competition drives the
equilibrium reserve price to zero in the ex ante case.

In a large market, sellers’ expected payoffs are the same regardless of
whether buyers learn their valuations ex ante or ex post, namely Π(0, θ).
Expected payoffs for buyers, however are indexed by buyer type in the ex
ante case; specifically, a buyer with valuation x can expect a payoff of

V (0, θ;x) =

∫ x

0
e−θ(1−F (y))dy. (4)

To see this, note first that when buyers randomize their visits, the probability
that buyer x wins his auction is e−θ(1−F (x)). Next, conditional on winning,
this buyer’s expected payoff is the difference between his valuation and the
expected highest draw among the other buyers participating in the same
auction. Suppose n other buyers participate in the auction. All of these
other buyers have valuations below x (otherwise buyer x wouldn’t have
won the auction), so the density of valuations across these other buyers is
f(y)/F (x) for 0 ≤ y < x. The expected maximum of n draws from this
density is

E[Yn] =

∫ x

0
ny

(
f(y)

F (x)

)(
F (y)

F (x)

)n−1
dy = x−

∫ x

0

(
F (y)

F (x)

)n
dy,

so buyer x’s expected payoff, conditional on winning an auction in which n

other buyers participate, is
∫ x

0

(
F (y)

F (x)

)n
dy. Summing this expected payoff

against the probability mass function for n, i.e., taking into account that
buyers with valuations below x arrive at Poisson rate θF (x), gives

∞∑
n=0

e−θF (x) (θF (x))n

n!

∫ x

0

(
F (y)

F (x)

)n
dy =

∫ x

0
e−θ(F (x)−F (y))dy.

Multiplying by e−θ(1−F (x)), i.e., the probability that buyer x wins the auc-
tion, gives equation (4). Finally, note that the average buyer payoff is

V (0, θ) =

∫ 1

0
V (0, θ;x)f(x)dx =

∫ 1

0

∫ x

0
e−θ(1−F (y))dyf(x)dx =

∫ 1

0
(1−F (x))e−θ(1−F (x))dx,

where the last equality follows by integration by parts (u =
∫ x
0 e
−θ(1−F (y))dy,

v = −(1−F (x))). That is, the expected payoffper buyer is the same as in the
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ex post case. Once we know that every seller posts r = 0 in the competitive
search equilibrium, it is straightforward to show that competition among
sellers precludes participation fees, just as in the ex post case.

3 Effi ciency of Seller Entry —The Homogenous-
Seller Case

The above characterization of competitive search equilibrium was done tak-
ing θ = B/S as given. What happens when we allow for free entry of sellers
into the market? Suppose there is an entry cost (e.g., an advertising cost)
of A for sellers to enter the market. The free-entry condition is

Π(0, θ)−A = 0. (5)

This condition holds in both cases, i.e., irrespective of whether buyers learn
their valuations ex ante or ex post.

We now address the question of whether the level of seller entry is effi cient
in the free-entry competitive search equilibrium. The social planner problem
can be posed as follows. For fixed B, choose S to maximize

BV (0, θ) + S (Π(0, θ)−A)

or equivalently, since B is fixed, choose θ to maximize

V (0, θ) +
Π(0, θ)−A

θ
.

That is, the social planner wants to choose market tightness to maximize
total market surplus, expressed on a per-buyer basis. In the ex ante case, this
is the utilitarian social welfare function, i.e., the planner weights all buyers’
expected payoffs equally. The solution to this problem is characterized by

Vθ(0, θ) +
Πθ(0, θ)θ − (Π(0, θ)−A)

θ2
= 0,

and this holds in free-entry equilibrium since (i) Π(0, θ) − A = 0 and (ii)
Πθ(0, θ) + θVθ(0, θ) = 0. The former condition follows from free entry; the
latter is the first-order condition for the seller’s maximization problem as
shown in Albrecht, Gautier and Vroman (2012). In short, we have shown:

Proposition 1 In the homogeneous-seller version of the model, seller entry
is constrained effi cient.
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The intuition for this result is as follows. Effi cient seller entry requires
that the marginal entrant receive an expected payoff equal to the expected
increase in market surplus generated by her entry. The marginal seller’s ex-
pected payoff equals the expectation of the second highest valuation among
the buyers participating in her auction (or zero if fewer than two buyers
choose to participate). From the social planner’s point of view, this seller’s
auction creates an expected increase in market surplus equal to the ex-
pected value of the highest valuation among buyers who participate in her
auction (or zero if no buyers visit this seller). The difference between the
expected highest and second highest valuations is an information rent, and
this would seem to suggest that sellers do not have the correct incentives to
enter the market. There is, however, a counterbalancing business-stealing
effect. When a seller enters the market, the buyers (if any) who participate
in her auction are drawn from the auctions of other sellers, so there is a
decrease in surplus at the other sellers’auctions. The key to our result is
that the information-rent effect and the business-stealing effect exactly offset
each other in competitive search equilibrium.

To understand why these two effects are exactly offsetting, it is useful to
digress to consider the payoffs for buyers and seller in the marginal seller’s
auction. Suppose exactly n buyers visit this seller. Then her expected payoff
is E[Yn−1], where Yn−1 is the (n−1)st order statistic. Using standard results
from order statistics,

E[Yn−1] = E[Yn]− n
∫ 1

0
F (x)n−1(1− F (x))dx,

where

E[Yn] =

∫ 1

0
xnf(x)F (x)n−1dx

is the expected value of the highest valuation drawn among these n buyers.
For fixed n, the difference, E[Yn]−E[Yn−1], is the information rent that goes
to the winning bidder. However, since buyers are randomizing their visits
across all sellers (including the marginal entrant), the number of buyers
visiting any one seller is a Poisson random variable with parameter θ, and
we need to take this into account in the computation of buyer and seller
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payoffs. We have

Π(0, θ) =
∞∑
n=0

e−θθn

n!
E[Yn−1]

=

∞∑
n=0

e−θθn

n!

(∫ 1

0
xnf(x)F (x)n−1dx− n

∫ 1

0
F (x)n−1(1− F (x))dx

)

=
∞∑
n=0

e−θθn

n!

(∫ 1

0

(
x− 1− F (x)

f(x)

)
nf(x)F (x)n−1dx

)
= θ

∫ 1

0

(
x− 1− F (x)

f(x)

)
e−θ(1−F (x))f(x)dx. (6)

Equation (6) is the expression for expected seller payoff that is given in
Peters and Severinov (1997) (and that we used above), albeit derived from
a different perspective. Since second-price auctions with zero reserve prices
are effi cient, the total expected surplus is divided between the seller and the
buyers who participate in her auction. That is,

Π(0, θ) + θV (0, θ) = θ

∫ 1

0
xe−θ(1−F (x))f(x)dx = 1−

∫ 1

0
e−θ(1−F (x))dx, (7)

which in turn implies that

V (0, θ) =

∫ 1

0
(1− F (x)) e−θ(1−F (x))dx, (8)

which, again, is the expression for each buyer’s expected payoff given in
Peters and Severinov (1997). Finally, using equations (7) and (8), it is
straightforward to verify that

Πθ(0, θ) + θVθ(0, θ) = 0, (9)

as we argued above.3

Returning now to the intuition for the effi ciency of seller entry, we have
shown that (i) the total surplus associated with the marginal entrant’s auc-
tion is 1 −

∫ 1
0 e
−θ(1−F (x))dx and (ii) the difference between this total sur-

plus and what the seller can expect to receive (the information rent) is
3 Intuition for equation (9) can be given at the individual seller level. Consider a seller

posting a second-price auction with reserve price zero. Suppose n buyers are participating
in the auction. Now suppose a (n+1)st buyer also participates in the auction. Total surplus
increases only if this buyer wins the auction. In this case, the buyer gets his valuation
minus the value of the second highest bidder, i.e., he gets his marginal contribution to the
total surplus. This means that, as equation (9) states, the sum of the payoffs to the seller
and the incumbant n buyers does not change.
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θ
∫ 1
0 (1− F (x))e−θ(1−F (x))dx = θV (0, θ). Written in this way, it is clear that

the information-rent and business-stealing effects exactly cancel each other.
On average, the new entrant can expect to attract θ buyers, and each of
these buyers would have made an expected contribution of V (0, θ) to the
surplus associated with some other seller’s auction had the marginal seller
not entered the market. That is, the business-stealing loss caused by the
marginal seller’s entry equals θV (0, θ).

3.1 Rival Meeting Technologies

We have shown that seller entry is effi cient when buyer valuations are private
information under the assumption of a nonrival meeting technology. Two
earlier papers, Albrecht and Jovanovic (1986) and Guerrieri (2008), analyze
competitive search models with ex post private information but assume a
rival meeting technology.4 A natural question is whether seller entry is also
effi cient when the meeting technology is rival.

To address this question, we consider the following setup. Buyers meet
sellers according to a constant returns to scale meeting function M(B,S)
so that each buyer meets a seller with probability γ(θ), where γ(θ) satisfies
γ′(θ) < 0, γ′′θ) > 0, lim

θ→0
γ(θ) = 1 and lim

θ→∞
γ(θ) = 0. Each seller can interact

with only one buyer at a time. By constant returns to scale, the probability
that each seller meets a buyer is θγ(θ). When a buyer and a seller meet,
the buyer draws a valuation, x, for the seller’s good, where X ∼ F (x), with
corresponding density f(x), for 0 ≤ x ≤ 1.

Suppose each seller posts an meeting fee, φ, that is, an amount the buyer
has to pay before drawing his valuation, together with a purchase price, p,
that is, an additional amount that is paid if the buyer purchases the good.
The seller chooses φ, p and ξ to maximize

Π(φ, p, ξ) = ξγ(ξ) (φ+ (1− F (p)) p)

subject to

V (φ, p, ξ) = γ(ξ)

(
−φ+

∫ 1

p
(1− F (x)) dx

)
≥ V .

It is straightforward to show (details are given in Appendix A.1) that the
solution to this problem has the following properties. First, p∗ = 0; that

4Faig and Jerez (2005) analyze a competitive search model with ex post private infor-
mation and a rival meeting technology but do not consider seller entry. In the equilibrium
of their model, there is pairwise effi ciency, i.e., no surplus is left on the table.
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is, sellers post pairwise effi cient mechanisms —pairwise effi cient in the sense
that once a buyer and seller get together, no surplus is left on the table.
The intuition for this result is the same as in the nonrival setting. By the
market-utility constraint, sellers offer buyers exactly V . Then, given the fixed
payoff to the buyer, it is in each seller’s interest to choose a mechanism that
maximizes total surplus. Second, each seller’s implicit choice of ξ satisfies
Πξ(φ

∗, 0, ξ∗)+ξ∗Vξ(φ
∗, 0, ξ∗) = 0. Since all sellers post the same mechanism,

ξ∗ = θ, and we have Πθ(φ
∗, 0, θ)+θVθ(φ

∗, 0, θ) = 0, which, as in the nonrival
case, together with the free entry condition, gives the effi cient level of seller
entry. Once sellers post p∗ = 0, private information is irrelevant, and the
question of effi cient seller entry is the same as in models like Moen (1997).
The condition, Πθ(φ

∗, 0, θ)+θVθ(φ
∗, 0, θ) = 0, expresses the idea that at the

social planner optimum, the “congestion”and “thick market”externalities
that come from search frictions are exactly offsetting. Finally, competitive
search together with the free-entry condition determines the equilibrium
meeting fee.

As noted above, related results are given in Albrecht and Jovanovic
(1986) and Guerrieri (2008). These papers are both set in the labor mar-
ket so that the terms of trade are posted on the buyer (vacancy) side of
the market. Then the question is whether the level of vacancy creation is
effi cient. Albrecht and Jovanovic (1986) show that vacancies post effi cient
mechanisms and that the level of vacancy creation is effi cient but only under
the assumption that M(U, V ) = min[U, V ].With this meeting function, effi -
ciency of vacancy creation reduces to ensuring that there are equal numbers
of unemployed and vacancies in the market, and this condition is straight-
forward in their competitive search equilibrium. Guerrieri (2008) uses a
general rival meeting function, but she assumes that vacancies cannot post
meeting fees. In her competitive search equilibrium, the posted wage is too
low, so the posted mechanism is pairwise ineffi cient since some matches that
would yield a positive surplus are not formed. Conditional on the posted
mechanism, however, the level of vacancy creation is effi cient.5 This set-
ting leads to a counterintuitive result (Proposition 3 in Guerrieri 2008). For
some parameter configurations, the social planner can increase welfare by
“money burning,”i.e., the planner can make workers better of by reducing
the value of their outside option. This occurs because the reduction in the
outside option makes workers willing to accept lower wages. This leads to

5More specifically, vacancy creation is effi cient in the static version of her model. In
the dynamic version of her model, she shows that vacancy creation is ineffi cient in the
adjustment to the steady state.
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an increase of vacancies in the market and this can make workers better off
because even though their outside option has been reduced and they earn a
lower wage when employed, they have a suffi ciently higher probability of em-
ployment so that there is an overall increase in their expected utility. This
could not occur in Albrecht and Jovanovic (1986) or in our setup because the
equilibrium is constrained effi cient and there is no scope to improve welfare.

4 Heterogeneous Sellers

4.1 The Ex Post Case

Suppose a fraction q of the sellers in the market are “relaxed”(Type H) with
reservation value s ∈ (0, 1), while a fraction 1− q are “desperate”(Type L)
with reservation value zero. Competition forces every Type-H seller to post
a second-price auction with reserve price s. To see this, note that a Type-H
seller chooses r and ξ to maximize

Π(r, ξ; s) = s+ ξ

∫ 1

r
(v(x)− s)) e−ξ(1−F (x))f(x)dx s. t. V (r, ξ) = V ,

where v(x) is the virtual valuation function defined in equation (3). The
maximand reflects the fact that the seller loses her reservation value only if
the good is sold, and the notation reflects the fact that the seller’s expected
payoff varies with her reservation value. An extension of the argument given
in Albrecht, Gautier and Vroman (2012) can be used to show that the Type-
H seller’s optimal reserve price is r = s. Letting θH denote the rate at which
buyers visit Type-H sellers —we discuss the determination of θH below —,
the expected payoff for a Type-H seller in competitive search equilibrium
is Π(s, θH ; s). Similarly, all Type-L sellers post a second-price auction with
reserve price zero with corresponding expected payoffΠ(0, θL; 0), where θL,
also discussed below, is the rate at which buyers visit Type-L sellers.

Given that Type-H and Type-L sellers post second-price auctions with
reserve prices s and zero, respectively, buyers need to decide which seller
type to visit.6 In the ex post case, every buyer mixes between the two seller
types with the same probability. In symmetric equilibrium, the probability,
h, with which any one buyer chooses a Type-H seller has to be optimal for
that buyer given that other buyers use the same mixing probability.

6Note that, in choosing an auction to visit, buyers care only about the reserve price.
They are not concerned with the seller type per se. Thus, off-equilibrium beliefs are not
an issue.
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The arrival rates to the two seller types are determined by the buyer
mixing probability. Suppose each buyer visits a randomly chosen Type-H

seller with probability h. Then the arrival rate to Type-H sellers is
hB

qS
→

(
h

q
)θ ≡ θH . The corresponding arrival rate to Type-L sellers is

(1− h)B

(1− q)S →

(
1− h
1− q )θ ≡ θL. The Buyer Optimality Condition, i.e., the condition that the
buyer mixing probability has to satisfy, is

V (0, θL) ≥ V (0, θH) with equality if h > 0. (10)

Let B, L and H be the measures of buyers, Type-L sellers and Type-H
sellers in the market. Taking B and L as given, we want to endogenize H.
Here we are implicitly assuming that all Type-L sellers have already entered
the market —if that were not the case, then no Type-H sellers would chose
to enter. The free-entry condition for Type-H sellers is

Π(s, θH ; s)− (A+ s) = 0.

Now consider the problem of effi cient entry by Type-H sellers. The social
planner chooses θL, θH and h to maximize the sum of surpluses generated
by the two seller types. On a per-buyer basis, the social planner problem is
thus one of choosing θL, θH and h to maximize

L

B
SL +

H

B
(SH − (A+ s)),

where SL and SH are the surpluses associated with Type-L and Type-H
sellers, respectively. These are given by

SL = 1−
∫ 1

0
e−θL(1−F (x))dx

SH = 1−
∫ 1

s
e−θH(1−F (x))dx.

We can rewrite this problem in terms of q and h as follows. Define
ψ = B/L and note that

H

B
=

L

B

H

L
=

1

ψ

(
q

1− q

)
θL = (1− h)B/L = (1− h)ψ

θH = hB/H = h

(
1− q
q

)
ψ.
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The social planner problem is then one of choosing q and h to maximize

Ω =
1

ψ
SL +

1

ψ

(
q

1− q

)
(SH − (A+ s)) .

We can solve this problem by substituting for SL and SH and then
carrying out the maximization with respect to q and h. Doing so, we can
show that the equilibrium and social planner values of q and h coincide.
An alternative approach is to note that since the posted mechanisms are
effi cient given θL and θH , we can write

SL = Π(0, θL; 0) + θLV (0, θL)

SH = Π(s, θH ; s) + θHV (s, θH).

The first order conditions for the social planner’s problem are then

∂Ω

∂h
=

1

ψ

∂SL
∂θL

∂θL
∂h

+
1

ψ

(
q

1− q

)
∂SH
∂θH

∂θH
∂h

= 0

∂Ω

∂q
=

1

ψ

∂SL
∂θL

∂θL
∂q

+
1

ψ

(
q

1− q

)
∂SH
∂θH

∂θH
∂q

+
1

ψ

1

(1− q)2 (SH − (A+ s)) = 0.

Next, we use

∂θL
∂h

= −ψ;
∂θH
∂h

=

(
1− q
q

)
ψ;

∂θL
∂q

= 0;
∂θH
∂q

= −ψ 1

q2
h

∂SL
∂θL

= V (0, θL);
∂SH
∂θH

= V (s, θH).

The last two equalities follow from the analogs to equation (9). Plugging all
of these into the first-order conditions and using (i) Buyer Optimality, i.e.,
V (0, θL) = V (s, θH), and (ii) free-entry, i.e., Π(s, θH ; s) = A+ s, we have

Proposition 2 In the heterogeneous-seller version of the model, when buy-
ers draw their valuations ex post, seller entry and buyer sorting are con-
strained effi cient.

The intuition for the effi ciency of seller entry is the same as in the
homogeneous-seller case. The expected payoff for a Type-H entrant should
equal her expected contribution to total surplus in the market. The entrant’s
auction generates an increase in market surplus equal to the expected value
of the highest valuation among the buyers who participate in her auction,
but she generates a decrease in market surplus equal to the expected number
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of buyers she steals from other auctions times the expected contribution to
surplus that each of those buyers would have made elsewhere. The difference
between these two terms equals the expected value of the second highest val-
uation drawn by buyers participating in the entrant’s auction, which is the
entrant’s expected payoff. Buyer sorting is optimal because the incentives
of individual buyers and the social planner are perfectly aligned. If the
contribution of a buyer visiting, say, a Type-L seller were greater than the
contribution made by a buyer at a Type-H seller, i.e., V (0, θL) > V (s, θH),
then the planner would move buyers from Type-H to Type-L sellers.

4.2 The Ex Ante Case

In the final case that we consider, buyers learn their valuations before choos-
ing which seller to visit. As explained below, Type-L sellers again post r = 0
while Type-H sellers post r = s. Buyers then sort themselves based on their
valuations. Specifically, buyers with low valuations (x < x∗) randomize
their visits across sellers posting the zero reserve price while buyers with
high valuations (x ≥ x∗) randomize their visits across all sellers. Thus in
the ex ante case, buyer sorting determines both expected queue lengths and
the expected distributions of valuations at the two seller types.

This buyer sorting behavior can be understood as follows. It is pointless
for a buyer with valuation x ≤ s to visit a seller posting r = s since even
if he were the winning bidder, his payoff would be negative. Essentially the
same is true for buyers with valuations only slightly greater than s —these
buyers are also better off visiting a seller posting r = 0, even though there
is more competition there. However, why do buyers with x ≥ x∗ randomize
across all sellers? To understand this, consider the buyer with valuation x∗,
i.e., the buyer with the lowest valuation such that he is indifferent between
visiting a Type-L versus a Type-H seller. So long as buyers with higher
valuations randomize their visits across all sellers, the buyer with valuation
x∗ is equally likely to be the high bidder in a Type-H seller’s auction as he is
in a Type-L seller’s auction. The threshold value x∗ is then determined by
equating the expected payoffs in the two auctions, conditional on being the
high bidder. That is, by definition, the buyer with valuation x∗ is indifferent
between visiting the two seller types and, thus, randomizes his visits across
all sellers. The same is true for buyers with valuations above x∗. Consider
a buyer with valuation x′ > x∗. If all buyers with even higher valuations
randomize their visits across all sellers, then the buyer with valuation x′ is
equally likely to be the high bidder in either seller type’s auction. Finally,
given that expected payoffs conditional on winning are the same for the buyer
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with valuation x∗ and given that buyers with valuations between x∗ and x′

randomize their visits across all sellers, the expected payoff, conditional on
winning, for the buyer with valuation x′ is the same whether he chooses an
auction with reserve price zero or one with reserve price s.

To characterize x∗ explicitly, we can reason as follows. Suppose buyer x∗

visits a seller posting r = s. Then, conditional on winning, his payoff is x∗−s.
Suppose, alternatively, that this buyer visits a seller posting r = 0. Suppose
n buyers with valuations below x∗ visit this seller. Then, conditional on
winning, buyer x∗ has an expected payoff of x∗ − E[Yn], where Yn is the
highest valuation drawn by these n other buyers. The density of valuations
across buyers with x < x∗ is f(x)/F (x∗); thus

E[Yn] = x∗ −
∫ x∗

0

(
F (x)

F (x∗)

)n
dx.

Buyers with valuations below x∗ arrive at rate
BF (x∗)

L
→ ψF (x∗); hence,

conditional on being the high bidder, buyer x∗ can expect a payoff of

x∗ −
∞∑
n=0

e−ψF (x
∗) (ψF (x∗))n

n!
E[Yn] =

∫ x∗

0
e−ψ(F (x

∗)−F (x))dx.

The cutoff threshold x∗, equivalently, the Buyer Optimality Condition for
the ex ante case, is thus characterized by

x∗ − s =

∫ x∗

0
e−ψ(F (x

∗)−F (x))dx. (11)

At the beginning of this subsection, we claimed that sellers post their
reservation values. To understand why, first note that it is never in the
interest of the Type-L sellers to post r > 0. The argument is the same as
in the homogeneous-seller model. Second, given that Type-L sellers post
r = 0, Type-H sellers will post r = s. There is no incentive for any Type-
H seller to post a reserve price r′ > s since doing so would eliminate the
possibility of meeting buyers with valutions between s and r′ but would not
affect the expected arrival rate of buyers with higher valuations. Nor does
a Type-H seller want to post a reserve price below s. A Type-H seller who
posted r′′ < s would attract additional buyers in some range (x′′, x∗), but
if one of these buyers were to win the auction, the seller’s expected payoff
would be negative. By definition, the expected value of the second highest
bid given that a buyer with valuation x∗ wins the auction is equal to s, so
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the expected value of the second highest bid given that a buyer in the range
(x′′, x∗) wins the auction is less than s.

We also need the free-entry condition for Type-H sellers when buyers
draw their valuations ex ante. The free-entry condition is more complicated
than the one considered in the previous subsection because in the ex ante
case, the expected payoff for a Type-H seller depends not only on the number
of buyers she can expect to attract but also on the distribution of valuations
across those buyers. That is, the expected payoff for a Type-H seller can
be written as Π(s, θH , FH ; s), where θH is now the arrival rate of buyers to
Type-H sellers in the ex ante case and FH(x) is the distribution of valuations
across buyers visiting Type-H sellers.

The free-entry condition for Type-H sellers can be written as

Π(s, θH , FH ; s) = A+ s.

Since only buyers with valuations of x∗ and above visit these sellers, θH ≡
θ(1 − F (x∗)). We give explicit expressions for FH(x) and Π(s, θH , FH ; s)
in Appendix A.2. Equation (11) and the free-entry condition describe the
equilibrium in the heterogeneous-seller case in which buyers draw their val-
uations ex ante.

The final step is to consider the social planner problem. The planner
chooses a level of entry by Type-H sellers and an allocation of buyer types
across Type-L and Type-H sellers. If we take B and L as given (with B/L ≡
ψ), then, as in the ex post case, the level of entry by Type-H sellers,H, can be
expressed in terms of q = H/(H+L). The planner’s allocation of buyer types
across sellers reduces to a cutoff rule, x̂, such that all buyers with valuations
below x̂ are directed to Type-L sellers while those with valuations of x̂ or
above randomize their visits across all sellers. The reason the social planner
uses a cutoff rule can be seen as follows. The social planner clearly wants
all buyers with valuations of s and below to go to Type-L sellers. Buyers
with valuations in a range from s to x̂ also generate more social surplus if
they visit only Type-L sellers. To see this, consider a buyer with a valuation
close to 1 and suppose that all the buyers with higher valuations randomize
across seller types. This buyer creates social surplus only if he wins, and his
probability of winning is the same at all firms. If he wins at a Type-L seller,
his contribution to social surplus is his valuation minus the valuation of the
next highest bidder (who would have won in his absence). If he wins at a
Type-H seller, his contribution is the same unless the next highest bidder
has a valuation below s, then his contribution is his valuation minus s, which
is smaller. Let x̂ be the buyer for whom the expected next highest bidder
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at a Type-H seller has a valuation of s. Then the social planner wants all
buyers with valuations of x̂ and above to randomize across all sellers. Buyers
with valuations between s and x̂ generate more social surplus if they visit
only Type-L sellers. Therefore, the planner would like to set a cutoff value
so that all buyers with valuations below x̂ only visit the Type-L sellers and
all buyers with valuations of x̂ and above randomize over all sellers.

As in the ex post case, the social planner’s problem can be expressed on
a per-buyer basis as

Ω =
1

ψ
SL +

1

ψ

(
q

1− q

)
(SH − (s+A)) .

However, unlike the ex post case, the expected surpluses associated with
Type-L and Type-H sellers depend not only on buyer arrival rates but also
on the distributions of buyer valuations across the two seller types. We
therefore need explicit expressions for SL and SH . These are derived in
Appendix A.3.

The final step is to solve the social planner’s optimization problem, and
this is done in Appendix A.4. We show there that the social planner’s cutoff
value x̂ coincides with the privately optimal cutoff value x∗ and that the
free-entry equilibrium level of entry also coincides with the social optimum.
That is, we show

Proposition 3 In the heterogeneous-seller version of the model, when buy-
ers draw their valuations ex ante, seller entry and buyer sorting are con-
strained effi cient.

Relative to the case in which buyers learn their valuations ex post, buyers
are able to sort themselves across the two seller types. Proposition 3 shows
that they do so optimally.

5 Conclusion

The constrained effi ciency of competitive search equilibrium is well under-
stood when meetings between buyers and sellers take place on a one-on-one
basis. However, in many situations, e.g., in standard auction settings, it is
more appropriate to assume a nonrival meeting technology, i.e., many-on-
one meetings. These are situations in which buyers differ in terms of how
much they value the good that is being offered for sale and in which these
valuations are private information. In this paper, we have shown that the

19



constrained effi ciency of competitive search equilibrium continues to hold in
this richer environment.

We show that competitive search equilibrium is constrained effi cient in
both a short-run and in a long-run sense. In the short run, i.e., taking
market tightness as given, competition drives sellers to post effi cient mech-
anisms. In a setting in which sellers post second-price auctions, this means
that competition drives the symmetric equilibrium reserve price down to
the common seller reservation value so that “no surplus is left on the table.”
We show that sellers post effi cient mechanisms whether buyers learn their
valuations before or after choosing which seller to visit and whether sellers
are homogeneous or heterogeneous with respect to their reservation values.
Our short-run effi ciency results are mostly drawn from Peters and Severinov
(1997) and from our earlier work (Albrecht, Gautier and Vroman 2012).

Our main contribution in this paper is to show that competitive search
equilibrium is constrained effi cient in the long-run sense, i.e., allowing for
endogenous market tightness, even when meetings are nonrival and there
is asymmetric information within meetings. To get effi ciency, sellers who
could potentially enter the market need the correct incentives. The payoff
expected by the marginal entrant should equal her expected contribution to
market surplus. If we look only at the auction that the marginal entrant
posts, it seems that sellers have too little incentive to enter the market. The
expected contribution to market surplus from this auction is the expectation
of the highest valuation drawn by buyers who participate in that auction,
while the seller’s expected payoff is the expectation of the second-highest
valuation across buyers in her auction. This difference between what the
winning buyer expects to get and what the seller expects to receive is an
“information rent," and it is the existence of this information rent that
makes it seem at first glance that there will not be enough seller entry.
This argument, however, neglects the fact that the buyers who participate
in the marginal entrant’s auction would have participated in some other
seller’s auction had the last seller not entered the market. That is, the
marginal seller creates a business-stealing externality by her entry. Our
contribution, therefore, can be understood as showing that the information-
rent and business-stealing effects exactly offset each other in competitive
search equilibrium, thus generating the effi cient level of seller entry.
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A Appendix

A.1 Competitive search with a rival meeting technology

The Lagrangean for the seller maximization problem described in Section
3.1 is

L(φ, p, ξ, λ) = ξγ(ξ) (φ+ (1− F (p)) p)+λ

(
γ(ξ)(−φ+

∫ 1

p
(1− F (x)) dx)− V

)
with first-order conditions

∂L

∂φ
= ξγ(ξ)− λγ(ξ) = 0

∂L

∂p
= ξγ(ξ) (1− F (p)− pf(p))− λγ(ξ)(1− F (p)) = 0

∂L

∂ξ
= (γ(ξ) + ξγ′(ξ)) (φ+ (1− F (p)) p) + λγ′(ξ)(−φ+

∫ 1

p
(1− F (x)) dx) = 0

∂L

∂λ
= γ(ξ)(−φ+

∫ 1

p
(1− F (x)) dx)− V = 0

The first FOC implies that λ∗ = ξ. With λ∗ = ξ, the second FOC implies
p∗ = 0. Since all sellers post p∗ = 0 and all face the same market utility
constraint, ξ∗ = θ. Substituting into the third FOC gives

φγ(θ) + θγ′(θ)

∫ 1

0
(1− F (x)) dx = 0. (12)

With θ fixed, the fourth FOC can be solved for φ∗ = φ(θ, V ).
With free entry, θ is endogenized. The free-entry condition when p∗ = 0

is
Π(φ∗, 0, θ) = A.
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That is,
θγ(θ)φ = A.

The social planner’s problem is

max
θ

Π(φ∗, 0, θ)−A
θ

+ V (θ)

or equivalently

max
θ

[
θγ(θ)

∫ 1
0 (1− F (x)) dx−A

θ

]
.

The FOC for this problem is

θ(θγ′(θ) + γ(θ))
∫ 1
0 (1− F (x)) dx− (θγ(θ)

∫ 1
0 (1− F (x)) dx−A)

θ2
= 0

θγ′(θ)

∫ 1

0
(1− F (x)) dx+

A

θ
= 0

Using equation (12), this is

−φγ(θ) +
A

θ
= 0,

the free-entry condition. Thus, with a rival meeting technology, a price of
zero and the optimal meeting fee yield an equilibrium that is constrained
effi cient.

A.2 Free entry condition for the ex ante heterogeneity case

The density and cdf of valuations among those who visit Type-H sellers are

fH(x) =
f(x)

1− F (x∗)
for x∗ ≤ x ≤ 1 (13)

FH(x) =
F (x)− F (x∗)

1− F (x∗)
for x∗ ≤ x ≤ 1. (14)

The expected payoff for a Type-H seller is therefore

s+θ(1−F (x∗))

∫ 1

x∗
(v(x)− s) e−θ(1−F (x∗))(1−FH(x))fH(x)dx−(x∗−s)θ(1−F (x∗))e−θ(1−F (x

∗))

where the last term adjusts the virtual valuation function for the fact that
when only one buyer visits the Type-H seller, the seller gets a payoff of s
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rather than x∗. Using 1 − FH(x) =
1− F (x)

1− F (x∗)
, the free-entry condition for

sellers in the ex ante case can thus be written as

s+θ

∫ 1

x∗

(
x− 1− F (x)

f(x)
− s
)
e−θ(1−F (x))f(x)dx−(x∗−s)θ(1−F (x∗))e−θ(1−F (x

∗)) = A+s.

(15)
This condition can alternatively be derived directly. The expected payoff

of a Type-H seller can be written as

Π(s, θH , FH ; s) = s(e−θ(1−F (x
∗))+θ(1−F (x∗))e−θ(1−F (x

∗)))+
∞∑
n=2

E[Yn−1]P [N = n].

After much algebra, this is

Π(s, θH , FH ; s) = 1− (x∗ − s)e−θ(1−F (x∗))(1 + θ(1− F (x∗)))

−
∫ 1

x∗
e−θ(1−F (x))dx−

∫ 1

x∗
θ(1− F (x))e−θ(1−F (x))dx.

which equals the left-hand side of (15).

A.3 Surpluses under ex ante heterogeneity

The expected surplus per Type-L seller in the market is computed as fol-
lows. There are BF (x∗) buyers with x < x∗, all of whom visit Type-L
sellers, and there are B(1 − F (x∗)) buyers with x ≥ x∗, a fraction 1 − q
of whom visit Type-L sellers (because these buyers randomize their vis-
its across all sellers). The expected number of buyers per Type-L seller is

thus
B (F (x∗) + (1− q)(1− F (x∗)))

L
, so the arrival rate of buyers to any

one Type-L seller is ψ(1 − q(1 − F (x∗))). The density of valuations across
Type-L sellers is

fL(x) =

{
f(x)

1−q(1−F (x∗)) for 0 ≤ x < x∗

(1−q)f(x)
1−q(1−F (x∗)) for x∗ ≤ x ≤ 1

with corresponding distribution function

FL(x) =

{
F (x)

1−q(1−F (x∗)) for 0 ≤ x < x∗

(1−q)F (x)+qF (x∗)
1−q(1−F (x∗)) for x∗ ≤ x ≤ 1

.
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Conditional on receiving n visitors, the expected surplus generated in an
auction held by a Type-L seller is

E[Yn] =

∫ 1

0
xnfL(x)FL(x)n−1dx,

which can be written as

E[Yn] = 1−
∫ x∗

0

(
F (y)

1− q(1− F (x∗))

)n
dy−

∫ 1

x∗

(
(1− q)F (y) + qF (x∗)

1− q(1− F (x∗))

)n
dy.

We can then compute SL as follows:

SL =
∞∑
n=1

e−ψ(1−q(1−F (x
∗))) (ψ(1− q(1− F (x∗))))n

n!
E[Yn]

= 1−
∫ x∗

0
e−ψ(1−F (y)−q(1−F (x

∗)))dy −
∫ 1

x∗
e−ψ(1−q)(1−F (y))dy.

The expected surplus per Type-H seller in the market is computed in a
similar fashion. Buyers with valuations of x∗ and above visit Type-H sellers
at rate θ; buyers with valuations below x∗ do not visit these sellers. Suppose
n buyers visit a Type-H seller. The expected surplus associated with this
seller is then Emax[Yn, s], where Yn is the highest valuation among the n
visitors. Since x∗ > s, Emax[Yn, s] = s only if n = 0, an event that occurs
with probability e−θ(1−F (x

∗)). Using the expressions for fH(x) and FH(x)
given above in Appendix A.2,

E[Yn] =

∫ 1

x∗
ynfH(x)FH(x)n−1dy = 1−

∫ 1

x∗

(
F (y)− F (x∗)

1− F (x∗)

)n
dy, for n = 1, 2, ..

Thus,

SH = se−θ(1−F (x
∗)) +

∞∑
n=1

e−θ(1−F (x
∗)) (θ(1− F (x∗)))n

n!

(
1−

∫ 1

x∗

(
F (y)− F (x∗)

1− F (x∗)

)n
dy

)
= 1− (x∗ − s)e−θ(1−F (x∗)) −

∫ 1

x∗
e−θ(1−F (y))dy.

Finally, using θ = (1− q)ψ, we have

SH = 1− (x∗ − s)e−(1−q)ψ(1−F (x∗)) −
∫ 1

x∗
e−(1−q)ψ(1−F (y))dy.
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A.4 Proof Proposition 3

The social planner’s problem is to choose x̂ and q to maximize

1

ψ
SL +

1

ψ

(
q

1− q

)
(SH − (s+A))

where SL and SH are defined in Appendix A.3. Substitution gives

1

ψ

[
1−

∫ x̂
0 e
−ψ((1−F (y)−q(1−F (x̂)))dy −

∫ 1
x̂ e
−ψ(1−q)(1−F (y))dy

+
(

q
1−q

)(
1− (x̂− s)e−ψ(1−q)(1−F (x̂)) −

∫ 1
x̂ e
−ψ(1−q)(1−F (y))dy − (s+A)

) ]
Let

Ω =
1− eψq(1−F (x̂))

∫ x̂
0 e
−ψ(1−F (y))dy −

∫ 1
x̂ e
−ψ(1−q)(1−F (y))dy

+
(

q
1−q

)(
1− (x̂− s)e−ψ(1−q)(1−F (x̂)) −

∫ 1
x̂ e
−ψ(1−q)(1−F (y))dy − (s+A)

) .

The first order condition with respect to x̂ is

∂Ω

∂x̂
= [ψqf(x̂)eψq(1−F (x̂))

∫ x̂

0
e−ψ(1−F (y))dy − eψq(1−F (x̂))e−ψ(1−F (x̂)) − e−ψ(1−q)(1−F (x̂))]

+

(
q

1− q

)
[−e−ψ(1−q)(1−F (x̂)) − (x̂− s)ψ(1− q)f(x̂)e−ψ(1−q)(1−F (x̂)) − e−ψ(1−q)(1−F (x̂))]

= 0

∂Ω

∂x̂
= (1−q)[ψqf(x̂)eψq(1−F (x̂))

∫ x̂

0
e−ψ(1−F (y))dy]−q(x̂−s)ψ(1−q)f(x̂)e−ψ(1−q)(1−F (x̂)) = 0.

This FOC then reduces to

(x̂− s)e−ψ(1−q)(1−F (x̂)) = eψq(1−F (x̂))
∫ x̂

0
e−ψ(1−F (y))dy

or

x̂− s =

∫ x̂

0
e−ψ(F (x̂)−F (x))dx.

which implies that x̂ = x∗.
The FOC with respect to q is

∂Ω

∂q
= [−ψ(1− F (x̂))eψq(1−F (x̂))

∫ x̂

0
e−ψ(1−F (y))dy − ψ

∫ 1

x̂
e−ψ(1−q)(1−F (y))(1− F (y)dy]

+

(
q

1− q

)
[−(x̂− s)ψ(1− F (x̂))e−ψ(1−q)(1−F (x̂)) − ψ

∫ 1

x̂
e−ψ(1−q)(1−F (y))(1− F (y)dy]

+(
1

(1− q)2 )

(
1− (x̂− s)e−ψ(1−q)(1−F (x̂)) −

∫ 1

x̂
e−ψ(1−q)(1−F (y))dy − (s+A)

)
= 0
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Substituting from the FOC for x̂, this simplifies to

−
(

ψ

1− q

)
(x̂− s)(1− F (x̂))e−ψ(1−q)(1−F (x̂)) − (

ψ

1− q )

∫ 1

x̂
e−ψ(1−q)(1−F (y))(1− F (y)dy

= −(
1

(1− q)2 )

(
1− (x̂− s)e−ψ(1−q)(1−F (x̂)) −

∫ 1

x̂
e−ψ(1−q)(1−F (y))dy − (s+A)

)
.

This can be rewritten as

s+A = 1− (x̂− s)e−ψ(1−q)(1−F (x̂)) −
∫ 1

x̂
e−ψ(1−q)(1−F (y))dy

−ψ(1− q)(x̂− s)(1− F (x̂))e−ψ(1−q)(1−F (x̂))

−ψ(1− q)
∫ 1

x̂
e−ψ(1−q)(1−F (y))(1− F (y)dy.

Recalling that θ = ψ(1− q), this becomes

s+A = 1− (x̂− s)e−θ(1−F (x̂)) −
∫ 1

x̂
e−θ(1−F (y))dy

−θ(x̂− s)(1− F (x̂))e−θ(1−F (x̂))

−θ
∫ 1

x̂
e−θ(1−F (y))(1− F (y)dy.

Note that this is the free entry condition.
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